Abstract

We consider decision-making by boundedly-rational agents in dynamic stochastic environments. The behavioral primitive is anchored to the shadow price of the state vector. Our agent forecasts the value of an additional unit of the state tomorrow using estimated models of shadow prices and transition dynamics, and uses this forecast to choose her control today. The control decision, together with the agent’s forecast of tomorrow’s shadow price, are then used to update the perceived shadow price of today’s states. By following this boundedly-optimal procedure the agent’s decision rule converges over time to the optimal policy. Specifically, within standard linear-quadratic environments, we obtain general conditions for asymptotically optimal decision-making: agents learn to optimize. Our results carry over to closely related procedures based on value-function learning and Euler-equation learning. We provide examples showing that shadow-price learning extends to general dynamic-stochastic decision-making environments and embeds naturally in general-equilibrium models.

JEL Classifications: E52; E31; D83; D84

Key Words: Learning, Optimization, Bellman Systems

*We thank Richard Dennis and Eric Leeper for helpful suggestions, and are indebted for the many comments from participants at numerous seminars and conferences including The University of Oregon, The University of St. Andrews, FRB St. Louis Learning Week workshop, Indiana University-Bloomington, The Bank of Spain, Banque du France, University of California-Irvine, University of Pittsburg, West Virginia University. Financial support from National Science Foundation Grant no. SES-1025011 is gratefully acknowledged.
1 Introduction

A central paradigm of modern macroeconomics is the need for micro-foundations. Macroeconomists construct their models by aggregating the behavior of individual agents who are assumed “rational” in two important ways: they form forecasts optimally; and, given these forecasts, they make choices by maximizing their objective. Together with simple market structures, and sometimes institutional frictions, it is this notion of rationality that identifies a micro-founded model. While assuming rationality is at the heart of much economic theory, the implicit sophistication required of agents in the benchmark “rational expectations” equilibrium,\footnote{Seminal papers of the rational expectations approach include, e.g., Muth (1961), Lucas (1972) and Sargent (1973).} both as forecasters and as decision theorists, is substantial: they must be able to form expectations conditional on the true distributions of the endogenous variables in the economy; and they must be able to make choices – i.e. solve infinite horizon programming problems – given these expectations.

The criticism that the ability to make optimal forecasts requires an unrealistic level of sophistication has been leveled repeatedly; and, in response to this criticism, a literature on bounded rationality and adaptive learning has developed. Boundedly rational agents are not assumed to know the true distributions of the endogenous variables; instead, they have forecasting models that they use to form expectations. These agents update their forecasting models as new data become available, and through this updating process the dynamics of the associated economy can be explored. In particular, the asymptotic behavior of the economy can be analyzed, and if the economy converges in some natural sense to a rational expectations equilibrium, then we may conclude that agents in the economy are able to learn to forecast optimally.

In this way, the learning literature has provided a response to the criticism that rational expectations is unrealistic. Early work on least-squares (and, more generally, adaptive) learning in macroeconomics includes Bray (1982), Bray and Savin (1986) and Marcet and Sargent (1989); for a systematic treatment, see Evans and Honkapohja (2001). Convergence to rational expectations is not automatic and “expectational stability” conditions can be computed to determine local stability. Recent applications have emphasized the possibility of novel learning dynamics that may also arise in some models.

Increasingly, the adaptive learning approach has been applied to dynamic stochastic general equilibrium (DSGE) models by incorporating learning into a system of expectational difference equations obtained from linearizing conditions that capture optimizing behavior and market equilibrium. We will discuss this procedure later, but for now we emphasize that because the representative agents in these models typically live forever, they are being assumed to be optimal decision makers,
solving difficult stochastic dynamic optimization problems, despite having bounded rationality as forecasters. We find this discontinuity in sophistication unsatisfactory as a model of individual agent decision-making. The difficulty that subjects have in making optimal decisions, given their forecasts, has lead experimental researchers to distinguish between “learning to forecast” and “learning to optimize” experiments. For example, in recent experimental work, Bao, Duffy, and Hommes (2013) find that in a cobweb setting making optimal decisions is as difficult as making optimal forecasts.

To address this discontinuity we define the notion of bounded optimality. We imagine our agents facing a sequence of decision problems in an uncertain environment: not only is there uncertainty in that the environment is inherently stochastic, but also our agents do not fully understand the conditional distributions of the variables requiring forecasts. One option when modeling agent decisions in this type of environment is to assume that agents are Bayesian and that, given their priors, they are able to fully solve their dynamic programming problems. However, we feel this level of sophistication is extreme, and instead, we prefer to model our agents as relying on decidedly simpler behavior. Informally, we assume that each day our agents act as if they face a two-period optimization problem: they think of the first period as “today” and the second period as “the future,” and use one-period-ahead forecasts of shadow prices to measure the trade-off between choices today and the impact of these choices on the future. We call our implementation of bounded optimality shadow price learning (SP-learning).

Our notion of bounded optimality is inexorably linked to bounded rationality: agents in our economy are not assumed to fully understand the conditional distributions of the economy’s variables, or, in the context of an individual’s optimization problem, the conditional distributions of the state variables. Instead, consistent with the adaptive learning literature, we provide our agents with forecasting models, which they re-estimate as new data become available. Our agents use these estimated models to make one-period forecasts, and then use these one-period forecasts to make decisions.

We find our learning mechanism appealing for a number of reasons: it requires only simple econometric modeling and thus is consistent with the learning literature; it assumes agents make only one-period-ahead forecasts instead of establishing priors over the distributions of all future endogenous variables; and it imposes only that agents make decisions based on these one-period-ahead forecasts, rather than requiring agents to solve a dynamic programming problem with parameter uncertainty. Finally, SP-learning postulates that, fundamentally, agents make decisions by facing suitable prices for their trade-offs. This is a hallmark of economics. The central question that we address is whether SP-learning can converge asymptotically

---

2 This issue is discussed in Marimon and Sunder (1993), Marimon and Sunder (1994) and Hommes (2011). The distinction was also noted in Sargent (1993).
to fully optimal decision making. This is the analog of the original question, posed in the adaptive learning literature, of whether least-squares learning can converge asymptotically to rational expectations. Our main result is that convergence to fully optimal decision-making can indeed be demonstrated in the context of the standard linear-quadratic setting for dynamic decision-making.

Although we focus on SP-learning, we also consider two alternative implementations of bounded optimality: value-function learning and Euler-equation learning. Under value-function learning agents estimate and update (a model) of the value function, and make decisions based on the implied shadow prices given by the derivative of the estimated value function. With Euler-equation learning agents bypass the value-function entirely and instead make decisions based on an estimated model of their own policy rule. We establish that our central convergence results extend to these alternative implementations.

Our paper is organized as follows. In Section 2 we provide an overview of alternative approaches and introduce our technique. In Section 3 we investigate the regulator’s problem in a standard linear-quadratic framework. We show, under quite general conditions, that the policy rule employed by our boundedly optimal regulator converges to the optimal policy rule: following our simple behavioral primitives, our regulator learns to optimize. This is our central theoretical result, given as Theorem 4 in Section 3. Section 3 also provides a general comparison of SP-learning with alternative implementations, including value-function learning and Euler-equation learning. We note that while there are many applications of Euler-equation learning in the literature, our Theorem 6 is the first to establish its asymptotic optimality at the agent level in a general setting. Theorem 5 establishes the corresponding result for value-function learning. Section 5 introduces shadow-price learning into a single agent problem in a simple economic setting; we characterize individual agents’ decisions as based on their boundedly rational forecasts, and analyze associated learning dynamics. Section 6 illustrates SP-learning within a Ramsey model. Section 7 concludes.

2 Background and Motivation

Before turning to a systematic presentation of our results we first, in this Section, review the most closely related approaches available in the literature, and we then introduce and motivate our general methodology and discuss how it relates to the existing literature.
2.1 Agent-level learning and decision-making

We are, of course, not the first to address the issues outlined in the Introduction. A variety of agent-level learning and decision-making mechanisms, differing both in imposed sophistication and conditioning information, have been advanced. Here we briefly summarize these contributions, beginning with those that make the smallest departure from the benchmark rational expectations hypothesis.

Cogley and Sargent (2008) consider Bayesian decision making in a permanent-income model with risk aversion. In their set-up, income follows a two-state Markov process with unknown transition probabilities, which implies that standard dynamic programming techniques are not immediately applicable. A traditional bounded rationality approach is to embrace Kreps’s “anticipated utility” model, in which agents determine their program given their current estimates of the unknown parameters. Instead, Cogley and Sargent (2008) treat their agents as Bayesian econometricians, who use recursively updated sufficient statistics as part of an expanded state space to specify their programming problem’s time-invariant transition law. In this way agents are able to compute the fully optimal decision rule. The authors find that the fully optimal solution in their set-up is only a marginal improvement on the boundedly optimal procedure of Kreps. This is particularly interesting because to obtain their fully optimal solution Cogley and Sargent (2008) need to assume a finite planning horizon as well as a two-state Markov process for income, and even then, computation of the optimal decision rule requires a great deal of technical expertise.

The approach taken by Adam and Marcet (2011), like Cogley and Sargent (2008), requires that agents solve a dynamic programming problem given their beliefs. These beliefs take the form of a fully specified distribution over all potential future paths of those variables taken as external to the agents. This is somewhat more general than Cogley and Sargent (2008) in that the distribution may or may not involve parameters that need to be estimated. Adam and Marcet (2011) analyze a basic asset pricing model with heterogeneous agents, incomplete markets, linear utility and limit constraints on stock holding. Within this model, they define an “internally rational” expectations equilibrium (IREE) as characterized by a sequence of pricing functions mapping the fundamental shocks to prices, such that markets clear, given agents’ beliefs and corresponding optimal behavior.

In the Adam and Marcet (2011) approach, agents may be viewed quite naturally as Bayesians, i.e., they may have forecasting models in mind with distributions over the models’ parameters. In this sense agents are adaptive learners in a manner consistent with forming forecasts optimally against the implied conditional distributions obtained from a “well-defined system of subjective probability beliefs.” An REE is an IREE in which agents’ “internal” beliefs are consistent with the external “truth,” that is, with the objective equilibrium distribution of prices. Since they require that, in equilibrium, the pricing function is a map from shocks to prices, it follows that
agents must hold the belief that prices are functions only of the shocks – in this way, REE beliefs reflect a singularity: the joint distribution of prices and shocks is degenerate, placing weight only on the graph of the price function. Their particular set-up has one other notable feature, that the optimal decisions of each agent require only one-step ahead forecasts of prices and dividend. This would not generally hold for risk averse agents, as can be seen from the set-up of Cogley and Sargent (2008), in which a great deal of sophistication is required to solve for the optimal plans.

Using the “anticipated utility” framework, Preston (2005) develops an infinite-horizon (or long-horizon) approach, in which agents use past data to estimate a forecasting model; then, treating these estimated parameters as fixed, agents make time \( t \) decisions that are fully optimal. This decision-making is optimal in the sense that it incorporates the (perceived) lifetime budget constraint (LBC) and the transversality condition (TVC). However, in this approach agents ignore the knowledge that their estimated forecasting model will change over time. Applications of the approach include, for example, Eusepi and Preston (2010) and Evans, Honkapohja, and Mitra (2009). Long-horizon forecasts were also emphasized in Bullard and Duffy (1998).

A commonly used approach known as Euler equation learning, developed e.g. in Evans and Honkapohja (2006), takes the Euler equation of a representative agent as the behavioral primitive and assumes that agents make decisions based on the boundedly rational forecasts required by the Euler equation. As in the other approaches, agents use estimated forecast models, which they update over time, to form their expectations. In contrast to infinite-horizon learning, agents are behaving in a simple fashion, forecasting only one period in advance. Thus they focus on decisions on this margin and ignore their LBC and TVC. Despite these omissions, when Euler equation learning is stable the LBC and TVC will typically be satisfied. Euler-equation learning is usually done in a linear framework. An application that retains the nonlinear features is Howitt and Özak (2009).

Euler equation learning can be viewed as an agent-level justification for “reduced-form learning,” which is widely used, especially in applied work. Under the reduced-form implementation, one starts with the system of expectational difference equations obtained by linearizing and reducing the equilibrium equations implied by RE, and then replaces RE with subjective one-step ahead forecasts based on a suitable linear

---

3See also Honkapohja, Mitra, and Evans (2013)
4A finite-horizon extension of Euler-equation learning is developed in Branch, Evans, and McGough (2013).
5Howitt and Özak (2009) study boundedly optimal decision making in a non-linear consumption/savings model. Within a finite-state model, agents are assumed to use decision rules that are linear in wealth and updated so as to minimize the squared ex-post Euler equation error, i.e. the squared difference between marginal utility yesterday and discounted marginal utility today, accounting for growth. They find numerically that agents quickly learn to use rules that result in small welfare losses relative to the optimal decision rule.
6An early example is Bullard and Mitra (2002)
forecasting model updated over time using adaptive learning. This approach leads to a particularly simple stability analysis,\(^7\) but often fails to make clear the explicit connection to agent-level decision making.

The above procedures all involve forecasting, and thus require an estimate of the transition dynamics of the economy. This estimation step can be avoided using an approach called Q-learning, developed originally by Watkins (1989) and Watkins and Dayan (1992). Under Q-learning, which is most often used in finite-state environments, an agent estimates the “quality values” associated with each state/action pair. One advantage of Q-learning is that it eliminates the need to form forecasts by updating quality measures ex-post. To pursue the details some notation will be helpful. Let \( x \in X \) represent a state and \( a \in A \) represent an action. The usual Bellman system has the form

\[
V(x) = \max_{a \in A} \left( r(x, a) + \beta \sum P_{xy}(a)V(y) \right),
\]

where \( r \) captures the instantaneous return and \( P_{xy}(a) \) is the probability of moving from state \( x \) to state \( y \) given action \( a \). The quality function \( Q : X \times A \to \mathbb{R} \) is defined as

\[
Q(x, a) = r(x, a) + \beta \sum P_{xy}(a)V(y).
\]

Under Q-learning, given \( Q_{t-1}(x, a) \), the estimate of the quality function at (the beginning of) time \( t \), and given the state \( x \) at \( t \), the agent chooses the action \( a \) with the highest quality, i.e. \( a = \max_{a' \in A} Q_{t-1}(x, a') \). At the beginning of time \( t + 1 \), the estimate of \( Q \) is updated recursively as follows:

\[
Q_t(x, a) = Q_{t-1}(x, a) + \frac{1}{t} I \left( a = \max_{a' \in A} Q_{t-1}(x, a') \right) \left( r(x, a) + \beta \max_{b \in A} Q_{t-1}(y, b) \right),
\]

where \( I \) is the indicator function and \( y \) is the state that is realized in \( t + 1 \). Notice that \( Q_t \) does not require knowledge of the state’s transition function. Provided the state and action spaces are finite, Watkins and Dayan (1992) show \( Q_t \to Q \) almost surely under a key assumption, which requires in particular each state/action pair is visited infinitely many times. We note that this assumption is not easily generalized to the continuous state and action spaces that are standard in the macroeconomic literature.

A related approach to boundedly rational decision making uses classifier systems. An early well-known economic application is Marimon, McGrattan, and Sargent (1990). They introduce classifier system learning into the model of money and matching due to Kiyotaki and Wright (1989). They consider two types of classifier systems. In the first, there is a complete enumeration of all possible decision rules. This is possible in the Kiyotaki-Wright set-up because of the simplicity of that model. The second type of classifier system instead uses rules that do not necessarily distinguish each state, and which uses genetic algorithms to periodically prune rules and generate new ones. Using simulations Marimon et al. show that learning converges to a

\(^7\)See Chapter 10 of Evans and Honkapohja (2001).
stationary Nash equilibrium in the Kiyotaki-Wright model, and that, when there are multiple equilibria, learning selects the fundamental low-cost solution.

Lettau and Uhlig (1999) incorporate rules of thumb into dynamic programming using classifier systems. In their “general dynamic decision problem” they consider agents maximizing expected discounted utility, where agents make decisions using rules of thumb (a mapping from a subset of states into the action space, giving a specified action for specified states within this subset). Each rule of thumb has an associated strength. Learning takes place via updating of strengths. At time $t$ the classifier with highest strength among all applicable classifiers is selected and the corresponding action is undertaken. After the return is realized and the state in $t+1$ is (randomly) generated, the strength of the classifier used in $t$ is updated (using a gain sequence) by the return plus $\beta$ times the strength of the strongest applicable classifier in $t+1$. Lettau and Uhlig give a consumption decision example, with two rules of thumb, the optimal decision rule based on dynamic programming and another non-optimal rule of thumb, applicable only in high-income states, in which agents consume all their income. They showed that convergence to this suboptimal rule of thumb is possible.\(^8\)

Our SP-learning framework shares various characteristics of the alternative implementations of agent-level learning discussed above. Like Q-learning and the related approaches based on classifier systems, SP-learning builds off of the intuition of the Bellman equation. (In fact, what we will call value-function learning explicitly establishes the connection.) As in infinite-horizon learning, we employ the anticipated utility approach rather than the more sophisticated Bayesian perspective. Like Euler-equation learning, it is sufficient for agents to look only one step ahead. While each of the alternative approaches has advantages, we find SP-learning persuasive in many applications due to its simplicity, generality and economic intuition.

\subsection*{2.2 Shadow-price learning}

Returning to the current paper, our objective is to develop a general approach for boundedly rational decision-making in a dynamic stochastic environment. While particular examples would include the optimal consumption-savings problems summarized above, the technique is generally applicable and can be embedded in standard general equilibrium macro models. To illustrate our technique, consider a standard

\footnote{Lettau and Uhlig discuss the relationship of their decision rule to Q-learning in their footnote 11, p. 165: they state that (i) Q-learning also introduces action mechanisms that ensure enough exploration so that all $(x, a)$ combinations are triggered infinitely often, and (ii) in Q-learning the value $Q(x, a)$ is assigned and updated for every state-action pair $(x, a)$. This corresponds to classifiers that are only applicable in a single state. In general, classifiers are allowed to cover more general sets of state-action pairs.}
dynamic programming problem

\[ V^*(x_0) = \max E_0 \sum_{t \geq 0} \beta^t r(x_t, u_t) \]  

subject to \[ x_{t+1} = g(x_t, u_t, \varepsilon_{t+1}) \]  

and \( x_0 \) given. Here \( u_t \in \Gamma(x_t) \subseteq \mathbb{R}^m \) is the vector of controls (with \( \Gamma(x_t) \) compact), \( x_t \in \mathbb{R}^n \) is the vector of (endogenous and exogenous) states variables, and \( \varepsilon_{t+1} \) is white noise. Our approach is based on the standard first-order conditions derived from the Lagrangian, namely

\[ L = E_0 \sum_{t \geq 0} \beta^t \left( r(x_t, u_t) + \lambda^*_t (g(x_{t-1}, u_{t-1}, \varepsilon_t) - x_t) \right), \]

Under the SP-learning approach we replace \( \lambda^*_t \) with \( \lambda_t \), representing the perceived shadow price of the state, and we treat equations (3)-(4) as the basis of a behavioral decision rule.

To implement SP-learning (3)-(4) need to be supplemented with forecasting equations for the required expectations. In line with the adaptive learning literature, assume that the transition equation (2) is unknown, and must be estimated, and that agents do so by approximating the transition equation using a linear specification of the form

\[ x_{t+1} = Ax_t + Bu_t + C \varepsilon_{t+1}, \]

and thus the agents approximate \( g_x(x_t, u_t, \varepsilon_{t+1}) \) by \( A \) and \( g_u(x_t, u_t, \varepsilon_{t+1}) \) by \( B \). The coefficient matrices \( A, B \) are estimated and updated over time using recursive least squares (RLS). We also assume that agents believe the perceived shadow price \( \lambda_t \) is (or can be approximated by) a linear function of state, up to white noise, i.e.

\[ \lambda_t = H x_t + \mu_t, \]

where the matrix \( H \) also is estimated. Finally, we assume that agents know their preference function \( r(x_t, u_t) \). Then, given the state \( x_t \) and estimates for \( A, B, H \) the decision procedure is obtained by solving the system

\[ r_u(x_t, u_t)' = -\beta B' \hat{E}_t \lambda_{t+1} \]

\[ \hat{E}_t \lambda_{t+1} = H (Ax_t + Bu_t) \]

\[^9\text{For } t = 0 \text{ the last term in the sum is replaced by } \lambda^*_0 (\bar{x}_0 - x_0), \text{ where } \bar{x}_0 \text{ is the initial state vector.}\]

\[^{10}\text{Here we have expanded the state vector } x_t \text{ to include a constant.}\]
for $u_t$ and the forecasted shadow price, $\hat{E}_t \lambda_{t+1}$. Here $\hat{E}_t$ denotes the conditional expectation of the agent based on his forecasting model. These values can then be used with (3) to obtain an updated estimate of the current shadow price

$$\lambda_t = r(x_t, u_t)' + \beta A' \hat{E}_t \lambda_{t+1}. \quad (6)$$

Finally, the data $(x_t, u_t, \lambda_t)$ can be used to recursively update the parameter estimates $(A, B, H)$ over time. Taken together this procedure defines a natural implementation of the SP-learning approach.

As we will see, under more specific assumptions, this implementation of boundedly optimal decision making leads to asymptotically optimal decisions. In this sense shadow-price learning is reasonable from an agent perspective. Our approach has a number of strengths. Particularly attractive, we think, is the pivotal role played by shadow prices. In economics prices are central because agents use them to assess trade-offs. Here the perceived shadow price of next period’s state vector, together with the estimated transition dynamics, measures the intertemporal trade-offs and thereby determines the agent’s choice of control vector today. The other feature that we find compelling is the simplicity of the required behavior: agents make decisions as if they face a two-period problem. In this way we eliminate the discontinuity between the sophistication of agents as forecasters and agents as decision-makers. In addition, SP-learning incorporates the RLS updating of parameters that is the hallmark of the adaptive learning approach. Finally, this version of bounded optimality is applicable to the general stochastic regulator problem, and can be embedded in standard DSGE models.

While we view SP-learning as a very natural implementation of bounded optimality, there are some closely related variations that also yield asymptotic optimality. In Section 6 of his seminal paper on asset pricing, discussing stability analysis, Lucas (1978) briefly outlines how agents might update over time their subjective value function. In Section 4.2 we show how to specify a real-time procedure for updating an agent’s value function. Our Theorem 5 implies that this procedure converges asymptotically to the true value function of an optimizing agent. From Section 4.2 it can seen that another variation, Euler-equation learning, is in some cases equivalent to SP-learning. Indeed, Theorem 6 establishes the first formal general convergence result for Euler-equation learning by establishing its connections to SP-learning.

Having found that SP-learning is reasonable from an agent’s perspective, in that he can expect to eventually behave optimally, we embed shadow price learning into a simple economy consistent with our quadratic regulator environment. We consider a Robinson Crusoe economy, with quadratic preferences and linear technology: see Hansen and Sargent (2014) for many examples of these types of economies, including one of the examples we give. By including production lags we provide a simple example of a multivariate model in which SP-learning and Euler-equation learning differ. We use the Crusoe economy to walk carefully through the boundedly optimal
behavior displayed by our agent, thus providing examples of, and intuition for the behavioral assumptions made in Section 3.1.

While our formal results are proved for the Linear-Quadratic framework, as we have stressed, the techniques and intuition can be applied in a general setting. To illustrate this point we conclude with an application to the Ramsey model, in which we impose that the representative agent act as an SP learner within a general equilibrium environment. We show that asymptotically the household’s perceived shadow price approximates the corresponding social planner’s Lagrange multiplier.

3 Learning to optimize

We begin be specifying the programming problem of interest. We focus on the behavior of a decision maker with a quadratic objective function and who faces a linear transition equation; the linear-quadratic (LQ) set-up allows us to exploit certainty equivalence and to conduct parametric analysis.\textsuperscript{11} The specification of our LQ problem, which is standard, is taken from Hansen and Sargent (2014); see also Stokey and Lucas Jr. (1989), and Bertsekas (1987).

3.1 Linear quadratic dynamic programing

The “sequence problem” is to determine a sequence of controls $u_t$ that solves

$$V^*(x_0) = \max \quad -E_0 \sum \beta^t (x_t' R x_t + u_t' Q u_t + 2 x_t' W u_t)$$

$$s.t. \quad x_{t+1} = A x_t + B u_t + C \varepsilon_{t+1}.$$  \hfill (7)

Here $Q$ is symmetric positive definite and $R - W' Q^{-1} W$ is symmetric positive semi-definite, which ensure that the period objective is concave. These conditions, as well as further restrictions on $R, Q, W, A$ and $B$, will be discussed in detail below: see LQ.1-LQ.3. The initial condition $x_0$ is taken as given. As with the general dynamic programming problem (1) - (2), we assume $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$, with the matrices conformable. To allow for a constant in the objective and in the transition, we assume that $x_{1t} = 1$. It follows that first row of $A$ is $(1, 0, \ldots, 0)$ and that the first row of $B$ is $(0, 0, \ldots, 0)$. We further assume that $\varepsilon_t \in \mathbb{R}^k$ is a zero-mean i.i.d. process with $E \varepsilon_t' \varepsilon_t' = \sigma^2 I$ and compact support. The assumptions on $\varepsilon_t$ are convenient but can be relaxed considerably: for example, Theorem 2 only requires that $\varepsilon_t$ be a martingale difference sequence with (finite) time-invariant second moments; and, Theorem 4 holds if the assumption of compact support is replaced by the existence of finite absolute moments.

\textsuperscript{11}The LQ set-up can also be used to approximate more general nonlinear environments.
The sequence problem is commonly analyzed by considering the associated Bellman functional equation. The Principle of Optimality states that the solution to the sequence problem $V^*$ satisfies
\[
V^*(x) = \max_u - (x'R x + u' Qu + 2 x' Wu) + \beta E (V^*(Ax + Bu + C\varepsilon)|x, u). \tag{8}
\]
The Bellman system (8) may be analyzed using the Riccati equation
\[
P = R + \beta A' P A - (\beta A' P B + W)(Q + \beta B' P B)^{-1} (\beta B' P A + W'). \tag{9}
\]
Under certain conditions that will be discussed in detail below, this non-linear matrix equation has a unique, symmetric, positive semi-definite solution $P^*$.\textsuperscript{12} The matrix $P^*$, interpreted as a quadratic form, identifies the solution to the Bellman system (8), and allows for the computation of the feedback matrix $F^*$ that provides the sequence of controls solving the programming problem (7). Specifically, Theorem 2 states that
\[
V^*(x) = -x' P^* x - \frac{\beta}{1 - \beta} \text{tr} \left( \sigma^2 P^* C C' \right) \tag{10}
\]
\[
F^* = (Q + \beta B' P^* B)^{-1} (\beta B' P^* A + W'), \tag{11}
\]
where $\text{tr}$ denotes the trace of a matrix, and where $u_t = -F^* x_t$ solves (7). Note that the optimal policy matrix $F^*$ depends on the matrix $P^*$, but not on $\sigma^2$ or $C$. This is an illustration of certainty equivalence in the LQ-framework: the optimal policy rule is the same in the deterministic and stochastic settings.

3.1.1 Perceptions and realizations: the T-map

Solving Bellman systems in general, and Riccati equations in particular, is often approached recursively: given an approximation $V_n$ to the solution $V^*$, a new approximation, $V_{n+1}$, may be obtained using the right-hand-side of (8):
\[
V_{n+1}(x) = \max_u - (x'R x + u' Qu + 2 x' Wu) + \beta E (V_n(Ax + Bu + C\varepsilon)|x, u). \tag{8}
\]
This approach has particular appeal to us because it has the flavor a learning algorithm: given a perceived value function $V_n$ we may compute the corresponding realized, or actual value function $V_{n+1}$. In this Section we work out the initial implications of this viewpoint.

We start with the deterministic case in which $C = 0$, thus shutting down the stochastic shocks. We imagine the decision-making behavior of a boundedly rational agent, who perceives that the value $V$ of the state tomorrow (which here we denote
\textsuperscript{12}Solving the Riccati equation is not possible analytically; however, a variety of numerical methods are available.
\( \tilde{x} \) is represented as a quadratic form: \( V(\tilde{x}) = -\tilde{x}'P\tilde{x} \). To ensure that the agent’s objective is concave, we assume that \( P \) is symmetric positive semi-definite. For convenience we will refer to \( P \) as the perceived value function. The agent chooses \( u \) to solve

\[
V^P(x) = \max_u - (x'Rx + u'Qu + 2x'Wu) - \beta(Ax + Bu)'P(Ax + Bu),
\]

where \( V^P \) can be viewed as representing the actual or realized value function implied by perceptions \( P \). The following Lemma characterizes the agent’s control decision and the realized value function.\(^{13}\)

**Lemma 1** Consider the deterministic problem (12). If \( P \) is symmetric positive semi-definite then

1. The unique optimal control decision for perceptions \( P \) is given by \( u = -F(P)x \), where

\[
F(P) = (Q + \beta B'PB)^{-1} (\beta B'PA + W').
\]

2. The realized value function for perceptions \( P \) is given by \( V^P(x) = -x'T(P)x \), where

\[
T(P) = R + \beta A'PA - (\beta A'PB + W) (Q + \beta B'PB)^{-1} (\beta B'PA + W').
\]

We note that the right-hand-side of \( T(P) \) is given by the right-hand-side of the Riccati equation. We conclude that the fixed point \( P^* \) of the T-map identifies the solution to our agent’s optimal control problem. For general perceptions \( P \) the boundedly optimal control decision is given by \( u = -F(P)x \).

**Remark 1** Since the first row of \( B \) is zero, it follows that \( B'P \) does not depend on \( P_{11} \). Hence the \((1,1)\) entry of perceptions \( P \) does not affect the control decision.

Here and in the sequel it will sometimes be convenient to allow for more general perceptions \( P \). To this end we define \( U \) to be the open set of all \( n \times n \) matrices \( P \) for which \( \det(Q + \beta B'PB) \neq 0 \). Since \( Q \) is positive definite, \( U \) is not empty. It follows that \( T \) is well-defined on \( U \).

The same contemplation may be considered in the stochastic case. Again, consider a boundedly rational agent who perceives that the value \( V \) of the state tomorrow is represented as a quadratic form: \( V(\tilde{x}) = -\tilde{x}'P\tilde{x} \) for some symmetric positive semi-definite \( P \). The agent now chooses \( u \) to solve

\[
V^P_\varepsilon(x) = \max_u \left[ - (x'Rx + u'Qu + 2x'Wu) - \beta \mathbb{E} ((Ax + Bu + C\varepsilon)'P(Ax + Bu + C\varepsilon)|x, u) \right].
\]

In the stochastic case the result corresponding to Lemma 1 is the following.

\(^{13}\)See Appendix A for proofs of Lemma and Theorems.
Lemma 2 Consider the stochastic problem (14). If $P$ is symmetric positive semi-definite then

1. The optimal control decision for perceptions $P$ is given by $u = -F_\varepsilon(P)x$, where
   
   $$F_\varepsilon(P) = (Q + \beta B'PA + W')^{-1}(\beta B'PA + W').$$

2. The realized value function for perceptions $P$ is given by $V_\varepsilon^P(x) = -x'T_\varepsilon(P)x$, where $T_\varepsilon(P) = T(P) - \beta\Delta(P)$ and $\Delta(P) = -\text{tr}(\sigma_\varepsilon^2PCC') \oplus 0_{n-1 \times n}.

Furthermore, if $\bar{P} \in U$ and $T(\bar{P}) = \bar{P}$ then $T_\varepsilon(\bar{P}) = \bar{P}$, where

$$\bar{P}_\varepsilon = \bar{P} - \frac{\beta}{1 - \beta}\Delta(\bar{P}).$$

Here $\oplus$ denotes the direct sum of two matrices, i.e. for matrices $M_1$ and $M_2$ we define $M_1 \oplus M_2$ as the block-diagonal matrix

$$M_1 \oplus M_2 = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}.$$ 

Fully optimal decision-making is determined by the fixed point $P_\varepsilon^*$ of the map $T_\varepsilon$. This fixed point is related to the solution $P^*$ to the Riccati equation, and hence to the solution to the deterministic problem, by the following equation:

$$P_\varepsilon^* = P^* - \frac{\beta}{1 - \beta}\Delta(P^*).$$

In this way, the solution to the non-stochastic problem yields the solution to the stochastic problem. We note that the map $T_\varepsilon$ will be particularly useful when analyzing value-function learning in Section 4.2.1.

It is well-known that LQ problems exhibit certainty equivalence, i.e. the optimal control decision is independent of $C$. Certainty equivalence carries over to boundedly optimal decision making, but the manifestation is distinct:

- Under fully optimal decision making, $F_\varepsilon(P_\varepsilon^*) = F(P^*)$.
- Under boundedly optimal decision making, and given perceptions $P$, we have $F_\varepsilon(P) = F(P)$. In the sequel we will therefore use $F(P)$ for $F_\varepsilon(P)$ whenever convenient.

Note that in both cases the control decision given the state $x$ is the same for the stochastic and deterministic problems.
3.1.2 The LQ assumptions

We now consider conditions sufficient to guarantee the sequence problem (7) has a unique solution, which, via the principle of optimality, guarantees that the Riccati equation has a unique positive semi-definite solution. We introduce the needed concepts informally first, and then turn to their precise definitions.

- **Concavity.** To apply the needed theory of dynamic programming, the instantaneous objective must be bounded above, which, due to its quadratic nature, requires concavity. Intuitively, the agent should not be able to attain infinite value.

- **Stabilizability.** To be representable as a quadratic form, \( V^* \) must not diverge to negative infinity. This condition is guaranteed by the ability to choose a bounded control sequence \( u_t \) so that the corresponding trajectory of the state is also bounded. Intuitively, the agent should be able to stabilize the state.

- **Detectability.** Stabilizability implies that avoiding unbounded paths is feasible, but does not imply that the agent will want to stabilize the state. A further condition, detectability, is needed: explosive paths should be “detected” by the objective. Specifically, if the instantaneous objective gets large (in magnitude) whenever the state does then a stabilized state trajectory is desirable. Intuitively, the agent should want to stabilize the state.

To make these notions precise, it is helpful to consider the non-stochastic problem, which we transform to eliminate the state-control interaction in the objective and discounting: see Hansen and Sargent (2014), Chapter 3 for the many details. To this end, first notice

\[
x'Rx + u'Qu + 2x'Wu
\]

\[
= x'Rx - x'WQ^{-1}W'x + x'WQ^{-1}QQ^{-1}W'x + u'Qu + u'QQ^{-1}W'x + x'WQ^{-1}Qu
\]

\[
= x'(R - WQ^{-1}W')x + (u + Q^{-1}W'x)'Q(u + Q^{-1}W'x)
\]

\[
= x'\hat{R}x + (u + Q^{-1}W'x)'Q(u + Q^{-1}W'x),
\]

where \( \hat{R} = R - WQ^{-1}W' \). Next, let

\[
\hat{x}_t = \beta^\frac{1}{2}x_t \text{ and } \hat{u}_t = \beta^\frac{1}{2}(u_t + Q^{-1}W'x_t).
\]

Then

\[
\beta^\frac{1}{4} (x'_t Rx_t + u'_t Qu_t + 2x'_t W u_t) = \hat{x}'_t \hat{R}\hat{x}_t + \hat{u}'_t Q\hat{u}_t.
\]
Finally, we compute

\[\hat{x}_{t+1} = \beta^{\frac{1}{2}} x_{t+1} = \beta^\frac{1}{2} \left( A\beta^\frac{1}{2} x_t + B\beta^\frac{1}{2} u_t \right)\]

\[= \beta^\frac{1}{2} \left( A\beta^\frac{1}{2} x_t + B(u_t - Q^{-1}W'\beta^\frac{1}{2} x_t) \right)\]

\[= \beta^\frac{1}{2} \left( A - BQ^{-1}W' \right) x_t + \beta^\frac{1}{2} B\hat{u}_t = \hat{A}\hat{x}_t + \hat{B}\hat{u}_t,\]

where the last equality defines notation. It follows that the non-stochastic version of the LQ problem (7) is equivalent to the transformed problem

\[
\max \quad - \sum \left( \hat{x}_t' R \hat{x}_t + \hat{u}_t' Q \hat{u}_t \right) \\ \text{s.t.} \quad \hat{x}_{t+1} = \hat{A}\hat{x}_t + \hat{B}\hat{u}_t,
\]

where

\[
\hat{R} = R - WQ^{-1}W' \\
\hat{A} = \beta^\frac{1}{2} \left( A - BQ^{-1}W' \right) \\
\hat{B} = \beta^\frac{1}{2} B.
\]

The T-map of the transformed problem is computed as before, and will be of considerable importance:

\[-\hat{x}'\hat{T}(P)\hat{x} = \max_{\hat{u}} \left( \hat{x}' \hat{R} \hat{x} + \hat{u}'Q\hat{u} \right) - (\hat{A}\hat{x} + \hat{B}\hat{u})'P(\hat{A}\hat{x} + \hat{B}\hat{u}), \quad (19)\]

where \(P\) is a symmetric positive semi-definite matrix representing the agent’s perceived value function. Letting

\[\hat{F}(P) = \left( Q + \hat{B}' P \hat{B} \right)^{-1} \hat{B}' P \hat{A},\]

as shown in Lemma 1, the solution to the right-hand-side of (19) is given by \(\hat{u} = -\hat{F}(P)\hat{x}\).

It will be useful to identify the state dynamics that would obtain if the perceptions \(P\) were to be held constant over time. To this end, let \(\Omega(P) = \hat{A} - \hat{B}\hat{F}(P)\). It follows that the state dynamics \(\hat{x}_t\) for transformed problem, and the state dynamics \(x_t\) for the original problem would be provided by the following equations, respectively:

\[\hat{x}_t = \Omega(P)\hat{x}_{t-1} \quad \text{and} \quad x_t = \beta^{-1/2} \Omega(P)x_{t-1}.\]

These equations will be useful when we later study the decisions and evolution of the state \(x_t\) as perceptions \(P\) are updated over time. As shown in Lemma 3, the matrix \(\Omega(P)\) also provides a very useful alternative representation of \(T(P)\).
Lemma 3 Let \( P \in U \). Then

1. \( T(P) = \hat{T}(P) \).
2. \( \hat{T}(P) = \hat{R} + \hat{F}(P')Q\hat{F}(P) + \Omega(P')P\Omega(P) \).

Note that Lemma 3 holds for matrices that are not necessarily symmetric, positive semi-definite. However, we also note that the T-map preserves both symmetry and positive definiteness.

Because of item 1 of this Lemma, we will drop the hat on the T-map, even when explicitly considering the transformed problem. Also, in the sequel, while hatted matrices will correspond to the transformed problem, to reduce clutter, and because they refer to vectors in \( \mathbb{R}^n \) and \( \mathbb{R}^m \), whenever convenient we drop the hats from the states and controls.

We now turn to the formal conditions defining stabilizability and detectability. The latter is stated in terms of the rank decomposition of \( \hat{R} \). Specifically, below in LQ.1 we assume that \( \hat{R} \) is symmetric positive semidefinite. Thus, by the rank decomposition, \( \hat{R} \) can be factored as \( \hat{R} = \hat{D}\hat{D}' \), where \( \text{rank}(\hat{R}) = r \) and \( \hat{D} \) is \( n \times r \).

With this notation, we say that:

- A matrix is stable if its eigenvalues have modulus less than one.
- The matrix pair \((\hat{A}, \hat{B})\) is stabilizable if there exists a matrix \( K \) such that \( \hat{A} + \hat{B}K \) is stable.
- The matrix pair \((\hat{A}, \hat{D})\) is detectable provided that whenever \( y \) is a (nonzero) eigenvector of \( \hat{A} \) associated with the eigenvalue \( \mu \) and \( \hat{D}'y = 0 \) it follows that \( |\mu| < 1 \). Intuitively, \( \hat{D}' \) acts as a factor of the objective function’s quadratic form \( \hat{R} \): if \( \hat{D}'y = 0 \) then \( y \) is not detected by the objective function; in this case, the associated eigenvalue must be contracting.

With these definitions in hand, we may formally state the assumptions we make concerning the matrices identifying the LQ problem.

LQ.1: The matrix \( \hat{R} \) is symmetric positive semi-definite and the matrix \( Q \) is symmetric positive definite.

LQ.2: The system \((\hat{A}, \hat{B})\) is stabilizable.

---

\[ ^{14} \] Any positive semi-definite matrix \( \overline{X} \) may be factored as \( X = U\Lambda U' \), where \( U \) is a unitary matrix. The rank decomposition \( X = DD' \) obtains by writing \( \Lambda = \Lambda_1 \oplus 0 \), with \( \Lambda_1 \) invertible, and letting \( D = (U_{11}, U_{21})'\sqrt{\Lambda_1} \).
LQ.3: The system \((\hat{A}, \hat{D})\) is detectable.

This list provides the formal assumptions corresponding to the concepts of concavity, stabilizability, and detectability discussed informally above. By (17) LQ.1 imparts the appropriate concavity assumptions on the objective, and LQ.2 says that it is possible to find a set of controls driving the state to zero in the transformed problem. Finally, by LQ.3, \((\hat{A}, \hat{D})\) is detectable and the control path must be chosen to counter dynamics in the explosive eigenspaces of \(\hat{A}\).\(^{15}\) To illustrate, suppose \(z\) is an eigenvector of \(A\) with associated eigenvalue \(\mu\), suppose that \(|\mu| > 1\), and finally assume that \(x_0 = z\). If the control path is not chosen to mitigate the explosive dynamics in the eigenspace associated to \(\mu\) then the state vector will diverge in norm. Furthermore, because \((\hat{A}, \hat{D})\) is detectable, we know that \(\hat{D}'z \neq 0\). Taken together, these observations imply that an explosive state is suboptimal:

\[-x'_t \hat{R} x_t = -\mu^{2t} z' \hat{D} \hat{D}' z = -\left( |\mu|^t |\hat{D}' z| \right)^2 \rightarrow -\infty.\]

Hansen and Sargent (see Appendix A of Ch. 3 in Hansen and Sargent (2014)) put it more concisely (and eloquently): If \((\hat{A}, \hat{B})\) is stabilizable then it is feasible to stabilize the state vector; if \((\hat{A}, \hat{D})\) is detectable then it is desirable to stabilize the state vector.

The detectability of \((\hat{A}, \hat{D})\) plays another, less-obvious role in our analysis: it is needed for the stability at \(P^*\) of the following (soon-to-be-very-important!) matrix-valued differential equation:

\[\dot{P} = T(P) - P.\] (21)

Here we view \(P\) as a function of a notional time variable \(\tau\) and \(\dot{P}\) denotes \(dP/d\tau\). Under LQ.1-LQ.3 the stability of (21) at \(P^*\) is proved formally established using Theorem 1 below, but some intuition is available. For arbitrary state vector \(x\), we may apply the envelope theorem to the maximization problem

\[-x' T(P)x = \max_u -\left( x' \hat{R} x + u' Q u + 2x' W u \right) - \beta (Ax + Bu)' P(Ax + Bu)\]

to get

\[x' dT x = \beta (Ax + Bu)' dP(Ax + Bu) = x' \Omega(P)' dP \Omega(P)x, \text{ or } \]

\[dT = \Omega(P)' dP \Omega(P).\] (23)

Here the controls \(u\) in the middle expression of (22) are chosen optimally, the second equality of (22) follows from (20), and the equality (23) holds because \(x\) is arbitrary.

\(^{15}\)The rank decomposition of a matrix may not be unique (it is if the matrix is symmetric, positive definite). If \(R = DD' = SS'\) comprises two distinct rank decompositions of a symmetric, positive semi-definite matrix \(R\), and if \((A, D)\) is detectable then \((A, S)\) is also detectable. Indeed, if \(y\) is an eigenvalue of \(A\) and \(S'y = 0\) then \(Ry = 0\), so that \(DD'y = 0\). Since \(D\) is \(n \times r\) and of full rank, it follows that it acts injectively on the range of \(D'\); therefore, \(DD'y = 0\) implies \(D'y = 0\), which, by the detectability of \((A, D)\), means the eigenvalue associated to \(y\) must be contracting.
As is discussed in more detail in the next paragraph, the stability of the matrix system (21) turns on the Jacobian of its vectorization, which may be determined by applying the “vec” operator to (23).\footnote{The vec operator is the standard isomorphism coupling $\mathbb{R}^{n \times m}$ with $\mathbb{R}^{nm}$. Intuitively, the vectorization of a matrix $Z$ is obtained by simply stacking its columns. More formally, let $Z \in \mathbb{R}^{n \times m}$. For each $1 \leq k \leq nm$, use the division algorithm to uniquely write $k = jn + i$, for $0 \leq j \leq m$ and $0 \leq i < n$. Then

$$vec(Z)_k = \begin{cases} Z_{11} & \text{if } j = 0 \\ Z_{nj} & \text{if } i = 0 \\ Z_{i,j+1} & \text{else} \end{cases}.$$}

Since

$$vec(\Omega(P)'dP\Omega(P)) = (\Omega(P)' \otimes \Omega(P)') vec(dP),$$

and since the set of eigenvalues of $\Omega(P)' \otimes \Omega(P)'$ is the set of all products of the eigenvalues of $\Omega(P)$, it can be seen that $P^*$ is a stable rest point of (21) whenever the eigenvalues of $\Omega(P^*)$ are smaller than one in modulus, that is, whenever $\Omega(P^*)$ is a stable matrix. This is precisely where detectability plays its central role. As discussed above, by LQ.3, an agent facing the transformed problem desires to “stabilize the state,” that is, send $\dot{x}_t \to 0$. Also, by (20), the state dynamics in the transformed problem are given by $\dot{x}_{t+1} = \Omega(P^*)x_t$. It follows that $\Omega(P^*)$ must be a stable matrix.

Formal analysis of stability requires additional machinery. Before stating the principal result, we first secure the notation needed to compute derivatives when we have matrix-valued functions and matrix-valued differential equations. If $f : \mathbb{R}^p \to \mathbb{R}^q$ then $D(f)$ is the matrix of first partials, and for $x \in \mathbb{R}^p$, the notation $D(f)(x)$ emphasizes that the partials are evaluated at the vector $x$. Notice that $D$ is an operator that acts on vector-valued functions – we do not apply $D$ to matrix-valued functions. The analysis of matrix-valued differential equations is conducted by working through the vec operator. If $f : \mathbb{R}^{p \times p} \to \mathbb{R}^{q \times q}$ then we define $f_v : \mathbb{R}^{p^2} \to \mathbb{R}^{q^2}$ by $f_v = vec \circ f \circ vec^{-1}$, where the dimensions of the domain and range of the vec operators employed are understood to be determined by $f$. Thus suppose $f : \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$, assume $f(x^*) = 0$, and consider the matrix-valued differential equation $\dot{x} = f(x)$, where $\dot{x}$ denotes the derivative with respect to time. Let $y = vec(x)$, and note that $\dot{y} = vec(\dot{x})$. Then

$$\dot{x} = f(x) \implies vec(\dot{x}) = vec(f(x)) \implies \dot{y} = (vec \circ f \circ vec^{-1})(vec(x)) \implies \dot{y} = f_v(y).$$

Hence if $y^* = vec(x^*)$ then Lyapunov stability of $x^*$ may be assessed by determining the eigenvalues of $D(f_v)(y^*)$. As is well known, Lyapunov stability holds if these eigenvalues have negative real parts. A sufficient condition for this is that $D(f_v)(y^*) + I_{p^2}$ is a stable matrix.

The T-map and its fixed point $P^*$ are central to our analysis. The relevant properties are summarized by the following theorem.
Theorem 1 Assume LQ.1 – LQ.3. There exists an $n \times n$, symmetric, positive semi-definite matrix $P^*$ such that for any $n \times n$, symmetric, positive semi-definite matrix $P_0$, we have $T^m (P_0) \to P^*$ as $m \to \infty$. Further,

1. $T (P^*) = P^*$.
2. $D(T_v)(\text{vec}(P^*))$ is stable.
3. $P^*$ is the unique fixed point of $T$ among the class of $n \times n$, symmetric, positive semi-definite matrices.

Corollary 1 $D(T_v^\varepsilon)(\text{vec}(P^*_\varepsilon))$ is stable.

The theorem and corollary are proven in the appendix.

3.1.3 The LQ solution

Theorem 1 concerns the T-map and its fixed point $P^*$. The connection between the T-map and the LQ-problem (7) is given by the Bellman equation. In fact, Theorem 1 can be used to prove:

Theorem 2 Under assumptions LQ.1 – LQ.3, the Riccati equation (9) has a unique symmetric positive semi-definite solution, $P^*$, and iteration of the Riccati equation yields convergence to $P^*$ if initialized at any positive semi-definite matrix $P_0$. Also, there is a unique sequence of controls solving (7), given by $u_t = -F^* x_t$, where $F^*$ is determined by (11).

Theorem 2 is, of course, not original to us. That LQ.1 – LQ.3 are sufficient to guarantee existence and uniqueness of a solution to (7) appears to be well known: see Bertsekas (1987) pp. 79-80 and Bertsekas and Shreve (1978), Chapters 7 and 9. We include the statement and key elements of the proof of Theorem 2 for completeness, and because these elements, together with Theorem 1 and Corollary 1, are foundational for our main results. Hansen and Sargent (2014), Ch. 3, discuss the stability results under the assumptions LQ.1 – LQ.3.\textsuperscript{17}

Proving Theorem 2 involves applying the general theory of dynamic programming to the sequence problem and showing that analyzing the Bellman system corresponds to analyzing the T-map. The challenge concerns the optimality of a linear policy rule: this optimality must be demonstrated by considering non-linear policy rules,

\textsuperscript{17} Other useful references are Anderson and Moore (1979), Stokey and Lucas Jr. (1989), Lancaster and Rodman (1995) and Kwakernaak and Sivan (1972). Alternative versions of Theorem 2 often use the somewhat stronger assumptions of controllability and observability.
which, in effect, eliminates the technical advantage of having a quadratic objective. The stochastic case is further complicated by issues of measurability: even if the perceived value function (which, when corresponding to a possibly non-linear policy rule, cannot be assumed quadratic) is Borel measurable, the realized value function may not be. Additional technical machinery involving the theories of universal measurability and lower-semi-analytic functions is required to navigate these nuances. In the Appendix we work through the deterministic case in detail. The stochastic case is then addressed, providing a road-map to the literature.

3.2 Bounded optimality: shadow-price learning

For an agent to solve the programming problem (7) as described above, he must understand the quadratic nature of his value function as captured by the matrix \( P^* \), he must know the relationship of this matrix to the Riccati equation, he must be aware that iteration on the Riccati equation provides convergence to \( P^* \), and finally, he must know how to deduce the optimal control path given \( P^* \). Furthermore, this behavior is predicated upon the assumption that he knows the conditional means of the state variables, that is, he knows \( A \) and \( B \).

We modify the primitives identifying agent behavior, first by imposing bounded rationality and then by assuming bounded optimality. Our agent is not assumed to know the state variables’ conditional means: he must estimate \( A \) and \( B \). Our agent is also not assumed to know how to solve his programming problem: he does not know Theorem 2. Instead, he uses a simple forecasting model to estimate the value of a unit of state tomorrow, and then he uses this forecast, together with his estimate of the transition equation, to determine his control today. Based on his control choice and his forecast of the value of a unit of state tomorrow, he revises the value of a unit of state today. This provides him new data to update his state-value forecasting model.

We develop our analysis of the agent’s boundedly rational behavior in two stages. In the first stage, which we call “stylized learning,” we avoid the technicalities introduced by the stochastic nature of data realization and forecast-model estimation; instead, we simply assume that the agent’s beliefs evolve according to a system of differential equations that have a natural and intuitive appeal. In the second stage, we will then formally connect these equations to the asymptotic dynamics of the agent’s beliefs under the assumption that he is recursively estimating and updating his forecasting models, in real time, and behaving accordingly.
3.2.1 Stylized shadow-price learning

To facilitate intuition for our learning mechanism, we reconsider the above problem using a Lagrange multiplier formulation. The Lagrangian is given by

$$L = E_0 \sum_{t \geq 0} \beta^t (-x_t'Rx_t - u_t'Qu_t - 2x_t'Wu_t + \lambda_t'(Ax_{t-1} + Bu_{t-1} + C\varepsilon_t - x_t)),$$

where again for $t = 0$ the last term in the sum is replaced by $\lambda_0(\bar{x}_0 - x_0)$. As usual, $\lambda_t^*$ may be interpreted as the shadow price of the state vector $x_t$ along the optimal path. The first-order conditions provide

$$L_{x_t} = 0 \Rightarrow \lambda_t'' = -2x_t'R - 2u_t'W' + \beta E_t\lambda_{t+1}'A$$
$$L_{u_t} = 0 \Rightarrow 0 = -2u_t'Q - 2x_t'W + \beta E_t\lambda_{t+1}'B.$$

Transposing and combining with the transition equation yields the following dynamic system:

$$\lambda_t^* = -2Rx_t - 2Wu_t + \beta A'E_t\lambda_{t+1}^* \quad (24)$$
$$0 = -2W'x_t - 2Qu_t + \beta B'E_t\lambda_{t+1}^* \quad (25)$$
$$x_{t+1} = Ax_t + Bu_t + C\varepsilon_{t+1}. \quad (26)$$

This system, together with transversality, identifies the unique solution to (7). It also provides intuitive behavioral restrictions on which we base our notion of bounded optimality.

We now marry the assumption from the learning literature that agents make boundedly rational forecasts with a list of behavioral assumptions characterizing the decisions agents make given these forecasts; and, we do so in a manner that we feel imparts a level of sophistication consistent with bounded rationality. Much of the learning literature centers on equilibrium dynamics implied by one-step-ahead boundedly rational forecasts; we adopt and expand on this notion by developing assumptions consistent with the following intuition: agents make one-step-ahead forecasts and agents know how to solve a two-period optimization problem based on their forecasts. Formalizing this intuition, we make the following assumptions:

1. Agents know their individual instantaneous return function, that is, they know $Q, R,$ and $W$;
2. Agents know the form of the transition law and estimate the coefficient matrices;
3. Conditional on their perceived value of an additional unit of $x$ tomorrow, agents know how to choose their control today;
4. Conditional on their perceived value of an additional unit of \( x \) tomorrow, agents know how to compute the value of an additional unit of \( x \) today.

Assumption one seems quite natural: if the agent is to make informed decisions about a certain vector of quantities \( u \), he should at least be able to understand the direct impact of these decisions. Assumption two is standard in the learning literature: our agent needs to forecast the state vector, but is uncertain about its evolution; therefore, he specifies and estimates a forecasting model, which we take as having the same functional form as the linear transition equation, and forms forecasts accordingly. Denote by \( \hat{A} \) and \( \hat{B} \) the agent’s perceptions of \( A \) and \( B \) respectively. As will be discussed below, under stylized learning, these perceptions are assumed to evolve over time according to a differential equation, whereas under real-time learning, the agent’s perceptions are taken as estimates which he updates as new data become available.

Assumptions three and four require more explanation. Let \( \lambda_t \) be the agent’s perceived shadow price of \( x_t \) along the realized path of \( x \) and \( u \). One should not think of \( \lambda \) as identical to \( \lambda^* \); indeed \( \lambda^* \) is the vector of shadow prices of \( x \) along the optimal path of \( x \) and \( u \) and the agent is not (necessarily) interested in this value. Let \( \hat{E}_t\lambda_{t+1} \) be the agent’s time \( t \) forecast of the time \( t + 1 \) value of an additional increment of the state \( x \). Assumption three says that given \( \hat{E}_t\lambda_{t+1} \), the agent knows how to choose \( u_t \), that is, he knows how to solve the associated two-period problem. And how is this choice made? The agent simply contemplates an incremental decrease \( du_i \) in \( u_i \) and equates marginal loss with marginal benefit. If \( r \) is the “rate function” \( r(x, u) = -(x'Rx + u'Qu + 2x'Wu) \) then the marginal loss is \( r_{u_i}du_i \). To compute the marginal gain, he must estimate the effect of \( du_i \) on the whole state vector tomorrow. This effect is determined by \( \hat{B}_i du_i \), where \( \hat{B}_i \) is the \( i^{th} \)-column of the beliefs matrix \( \hat{B} \). To weigh this effect against the loss obtained in time \( t \), he must then compute its inner product with the expected price vector, and discount. Thus

\[
r_{u_i}du_i = \beta \hat{E}_t (\lambda_{it+1})' \hat{B}_i du_i.
\]

Stacking, and imposing our linear-quadratic set-up, gives the bounded rationality equivalent to (25):

\[
0 = -2W'x_t - 2Qu_t + \beta \hat{B}' \hat{E}_t \lambda_{t+1}.
\]

Equation (27) operationalizes assumption three.

To update their shadow-price forecasting model, the agent needs to determine the perceived shadow price \( \lambda_t \). Assumption four says that given \( \hat{E}_t\lambda_{t+1} \), the agent knows how to compute \( \lambda_t \). And how is this price computed? The agent simply contemplates an incremental increase in \( x_{it} \) and evaluates the benefit. An additional unit of \( x_{it} \) affects the contemporaneous return and the conditional distribution of tomorrow’s state; and the shadow price \( \lambda_t \) must encode both of these effects. Specifically, if \( r \) is
the rate function then the benefit of $dx_{it}$ is given by

$$
\left( r_{x_t} + \beta \hat{E}_t (\lambda_{t+1})' \hat{A}_t \right) dx_{it} = \lambda_{it} dx_{it}
$$

where the equality provides our definition of $\lambda_{it}$. Stacking, and imposing our linear quadratic set-up yields the bounded rationality equivalent to (24):

$$
\lambda_t = -2Rx_t - 2Wu_t + \beta \hat{A}' \hat{E}_t \lambda_{t+1}.
$$

Equation (28) operationalizes assumption four.

Assumption three, as captured by (27), lies at the heart of bounded optimality: it provides that the agent makes one-step-ahead forecasts of shadow prices and makes decisions today based on those forecasted prices, just as he would if solving a two-period problem. Assumption four, as captured by (28), provides the mechanism by which the agent computes his revised evaluation of a unit of state at time $t$: the agent uses the forecast of prices at time $t + 1$ and his control decision at time $t$ to reassess the value of time $t$ state; in this way, our boundedly optimal agent keeps track of his forecasting performance. Below, the agent uses $\lambda_t$ to update his shadow-price forecasting model. We call boundedly optimal behavior, as captured by assumptions one through four, shadow price learning.

We now specify the shadow-price forecasting model, that is, the way our agent forms $\hat{E}_t \lambda_{t+1}$. Along the optimal path it is not difficult to show that $\lambda^*_{it} = -2P^*_{x_t}$, and so it is natural to impose a forecasting model of this functional form. Therefore, we assume that at time $t$ the agent believes that

$$
\lambda_t = Hx_t + \mu_t
$$

for some $n \times n$ matrix $H$ (which we assume is near $-2P^*$) and some error term $\mu_t$. Equation (29) has the feel of what is known in the learning literature as a perceived law of motion (PLM): the agent perceives that his shadow price exhibits a linear dependence on the state as captured by the matrix $H$. When engaged in real-time decision making, as considered in Section 3.2.2, our agent will revisit his belief $H$ as new data become available. Under our stylized learning mechanism, $H$ is taken to evolve according to a differential equation as discussed below.

We can now be precise about the agent’s behavior. Given beliefs $\tilde{A}$, $\tilde{B}$ and $H$, expectations are formed using (29):

$$
\hat{E}_t \lambda_{t+1} = H(\tilde{A}x_t + \tilde{B}u_t).
$$

Equations (27) and (30) jointly determine the agent’s time $t$ forecast $\hat{E}_t \lambda_{t+1}$ and time $t$ control decision $u_t$. Finally, (28) is used to determine the agent’s perceived shadow price of the state $\lambda^*_{it}$.

\[18\] The control decision is determined by the first-order condition (27), which governs optimality provided suitable second-order conditions hold. These are satisfied if the perceptions matrix $H$ is negative semi-definite, which we assume unless otherwise stated.
It follows that the evolution of $u_t$ and $\lambda_t$ satisfy

$$u_t = (2Q - \beta \tilde{B}'H\tilde{B})^{-1}(\beta \tilde{B}'H\tilde{A} - 2W')x_t$$

$$\equiv F^{SP}(H, \tilde{A}, \tilde{B})x_t, \text{ and}$$

$$\lambda_t = \left(-2R - 2WF^{SP}(H, \tilde{A}, \tilde{B}) + \beta \tilde{A}'H(\tilde{A} + \tilde{B}F^{SP}(H, \tilde{A}, \tilde{B}))\right)x_t$$

$$\equiv T^{SP}(H, \tilde{A}, \tilde{B})x_t, \quad \text{(31)}$$

where the second lines of each equation define notation.\(^{19}\) The decision rule (31) is of course closely related to the decision rule given in Part 1 of Lemma 1, specifically:

$$F^{SP}(H, A, B) = -F(-H/2).$$

Note that it is not necessary to assume, nor do we assume, that our agent computes the map $T^{SP}$.

We now turn to stylized learning, which dictates how our agent’s beliefs, as summarized by the collection $(H, \tilde{A}, \tilde{B})$, evolve over time. In order to draw comparisons and promote intuition for our learning model, it is useful first to succinctly summarize the corresponding notion from the macroeconomics adaptive learning literature. There, boundedly rational forecasters are typically assumed to form expectations using a forecasting model, or PLM, that represents the believed dependence of relevant variables (i.e. variables that require forecasting) on regressors; the actions these agents take then generate an implied dependence, or actual law of motion (ALM), and the map taking perceptions, say as summarized by a vector $\Theta$, to the implied dynamics, is denoted with a $\tilde{\Theta}$. This map captures the model’s “expectational feedback” in that it measures how agents’ perceptions of the relationship between the relevant variables and the regressors feeds back to the realized relationship.

A fixed point of $\tilde{\Theta}$, say $\Theta^*$, corresponds to a rational expectations equilibrium (REE): agents’ perceptions then coincide with the true data-generating process, so that expectations are being formed optimally. Conversely, the discrepancy between perceptions and reality, as measured by $\tilde{T}(\Theta) - \Theta$, captures the direction and magnitude of the misspecification in agents’ beliefs. Under a stylized learning mechanism, agents are assumed to modify their beliefs in response to this discrepancy according to the expectational stability (E-stability) equation $d\Theta/d\tau = \tilde{\Theta}(\Theta) - \Theta$. Notice that $\Theta^*$ represents a fixed point of this differential equation. If this fixed point is Lyapunov stable then the corresponding REE is said to be E-stable, and stability indicates that an economy populated with stylized learners would eventually be in the REE.\(^{20}\)

\(^{19}\)Since $Q$ is positive definite and $P^*$ is positive semi-definite, it follows that $Q + \beta \tilde{B}'P^*\tilde{B}$ is invertible; thus $2Q - \beta \tilde{B}'HB$ is invertible for $H$ near $-2P^*$.

\(^{20}\)Besides having an intuitive appeal, stylized learning is closely connected to real-time learning.
Returning to our environment in which a single agent makes boundedly optimal
decisions, we observe that shadow-price learning is quite similar to the model of
boundedly rational forecasting just discussed. Equation (29) has already been inter-
preted as a PLM, and equation (33) acts as an ALM and reflects the model’s feedback:
the agent’s beliefs, choices and evaluations result in an actual linear dependence of his
perceived shadow price on the state vector as captured by \( T^{SP}(H, \bar{A}, \bar{B}) \). Notice
that the actual dependence of \( x_{t+1} \) on \( x_t \) and \( \upsilon_t \) is independent of the agent’s perceptions
and actions: there is no feedback along these beliefs’ dimensions. For this reason,
we assume for now that \( \bar{A} = A \) and \( \bar{B} = B \); and, abusing notation, we suppress the

corresponding dependency in the T-map: \( T^{SP}(H) \equiv T^{SP}(H, A, B) \). We will return
to this point when we consider real-time learning in Section 3.2.2.

Letting \( H^* = -2P^* \), it follows that \( T^{SP}(H^*) = H^* \). With beliefs \( H^* \), our agent
correctly anticipates the dependence of his perceived shadow price on the state vector;
also, since
\[
F(H^*, A, B) = -(Q + \beta B' P^* B)^{-1} (\beta B' P^* A + W'),
\]

it follows from equation (11) that with beliefs \( H^* \), our agent makes control choices op-
timally: a fixed point of the map \( T^{SP} \) corresponds to optimal beliefs and associated
behaviors. Conversely, the discrepancy between the perceived and realized depend-
ence of \( \lambda_t \) on \( x_t \), as measured by \( T^{SP}(H) - H \), captures the direction and magnitude
of the misspecification in our agent’s beliefs. Whereas in the literature on adaptive
learning this discrepancy arises because the agent does not fully understand the
conditional distributions of the economy’s aggregate variables, here the discrepancy
reflects our agent’s limited sophistication: he does not fully understand his dynamic
programming problem, and instead bases his decisions on his best measure of the
trade-offs he faces, as reflected by his belief matrix \( H \).

In Theorem 3 we embrace the concept of stylized learning presented above and
assume our agent updates his beliefs according to the matrix-valued differential equa-
tion \( dH/d\tau = T^{SP}(H) - H \). This system can be viewed as the bounded optimality
counterpart of the E-stability equations used to study whether expectations updated
by least-squares learning converge to RE. Note that \( H^* \) is a fixed point of this dy-
namic system. The following theorem together with Theorem 4, which demonstrates
stability under real-time learning, constitute the core results of the paper.

**Theorem 3** If LQ.1 – LQ.3 are satis
fied then \( H^* \) is a Lyapunov stable fixed point of
\( dH/d\tau = T^{SP}(H) - H \).

through the E-stability Principle, which states that REE that are stable under the E-stability differ-
ential equation are (locally) stable under recursive least-squares or closely related adaptive learning
rules. See Evans and Honkapohja (2001). Formally establishing that the E-stability Principle holds
for a given model requires the theory of stochastic recursive algorithms, as discussed and employed
in Section 3.2.2 below.
The proof of Theorem 3, which is given in Appendix A, simply involves connecting the maps \( T \) and \( T_{SP} \), and then using Theorem 1 to assess stability. While Theorem 3 provides a stylized learning environment, the main result of our paper, captured by Theorem 4, considers real-time learning. In essence Theorem 4 shows that the stability result of Theorem 3 carries over to the real-time learning environment.

### 3.2.2 Real-time shadow-price learning

To establish that stability under stylized learning carries over to stability under real-time learning, we now assume that our agent uses available data to estimate his forecasting model, and then uses this estimated model to form forecasts and make decisions, thereby generating new data. The forecasting model may be written

\[
x_{t+1} = A_t x_t + B_t u_t + \text{error}
\]

\[
\lambda_t = H_t x_t + \text{error},
\]

where the coefficient matrices are time \( t \) estimates obtained using recursive least-squares (RLS).\(^{21}\) We assume that to obtain the estimates \( A_t \) and \( B_t \), our agent regresses \( x_t \) on \( x_{t-1}, u_{t-1} \), using data \( \{x_t, x_{t-1}, u_{t-1}, \ldots, x_0, u_0\} \).\(^{22}\) To estimate the shadow-price forecasting model at time \( t \), and thus obtain the estimate \( H_t \), we assume our agent regresses \( \lambda_{t-1} \) on \( x_{t-1} \) using data \( \{x_{t-1}, \ldots, x_0, \lambda_{t-1}, \ldots, \lambda_0\} \).

We may describe the evolution of the estimate of \( A_t, B_t \) and \( H_t \) over time using RLS. The following dynamic system, written in recursive causal ordering, captures

---

\(^{21}\) An alternative to RLS is “constant gain” learning (CGL), which discounts older data. Under CGL asymptotic results along the lines of the following Theorem provide for weak convergence to a distribution centered on optimal behavior. See Ch. 7 of Evans and Honkapohja (2001) for general results, and for applications and results concerning transition dynamics, see Williams (2014) and Cho, Williams, and Sargent (2002).

\(^{22}\) As is standard in the learning literature, when analyzing real-time learning, the agent is assumed not to use current data on \( \lambda_t \) to form current estimates of \( H \) as this avoids technical difficulties with the recursive formulation of the estimators. See Marcet and Sargent (1989) for discussion and details.
the evolution of agent behavior under bounded optimality:

\[
x_t = Ax_{t-1} + Bu_{t-1} + C\varepsilon_t
\]

\[
R_t = R_{t-1} + \gamma_t (x_t'x_t - R_{t-1})
\]

\[
H_t = H_{t-1} + \gamma_t R_{t-1}^{-1} x_{t-1} (\lambda_{t-1} - H_{t-1} x_{t-1})'
\]

\[
\hat{R}_t = \hat{R}_{t-1} + \gamma_t \left( \left( \frac{x_{t-1}}{u_{t-1}} \right) (x_{t-1}', u_{t-1}') - \hat{R}_{t-1} \right)
\]

\[
\begin{pmatrix}
A'_{t-1} \\
B'_{t-1}
\end{pmatrix} = \begin{pmatrix}
A'_{t-1} \\
B'_{t-1}
\end{pmatrix} + \gamma_t \hat{R}_{t-1}^{-1} \begin{pmatrix}
x_{t-1} \\
u_{t-1}
\end{pmatrix} \left( x_t - \begin{pmatrix}
A_t \\
B_t
\end{pmatrix} \begin{pmatrix}
x_{t-1} \\
u_{t-1}
\end{pmatrix} \right)'
\]

\[
\lambda_t = T^{SP}(H_t, A_t, B_t)x_t
\]

\[
\gamma_t = \kappa(t + N)^{-q}.
\]

Here \(\gamma_t\) is a standard specification of a decreasing “gain” sequence that measures the response of estimates to forecast errors. We assume that \(0 < \vartheta, \kappa \leq 1\) and \(N\) is a non-negative integer.

**Theorem 4 (Asymptotic Optimality of SP-learning)** If \(LQ.1 - LQ.3\) are satisfied then, locally,

\[
(H_t, A_t, B_t) \xrightarrow{a.s.} (H^*, A, B)
\]

\[
F^{SP}(H_t, A_t, B_t) \xrightarrow{a.s.} -F^*
\]

when the recursive algorithm is augmented with a suitable projection facility.

See Appendix A for the proof, including a more careful statement of the Theorem, a construction of the relevant neighborhood, and a discussion of the “projection facility,” which essentially prevents the estimates from wandering too far away from the fixed point. A detailed discussion of real-time learning in general and projection facilities in particular is provided by Marcet and Sargent (1989), Evans and Honkapohja (1998) and Evans and Honkapohja (2001). We conclude that under quite general conditions, our simple notion of boundedly optimal behavior is asymptotically optimal, that is, shadow-price learners learn to optimize.

---

\(23\) In the updating equation for \((A_t, B_t)\) it might be natural to replace \(\hat{R}_{t-1}^{-1}\) with \(\hat{R}_{t-1}^{-1}\). However eliminating the resulting simultaneity would considerably complicate the system when placed in standard stochastic recursive algorithm form. This timing choice makes no difference asymptotically. See Marcet and Sargent (1989) for a brief discussion.

\(24\) Theorem 4 does not require the initial perception \(H_0\) to be negative semi-definite, which would ensure that the agent’s second-order condition holds. However, for \(\gamma_1\) sufficiently small, if \(H_0\) is negative semi-definite then \(H_t\) will be negative semi-definite for all \(t \geq 1\).
The principal, striking result of the adaptive learning literature is that boundedly rational agents, who update their forecasting models in natural ways, may learn to forecast optimally. Theorem 4 is complementary to this principal result, and equally striking: boundedly optimal decisions can converge asymptotically to fully optimal decisions. By estimating shadow prices, our agent has converted an infinite-horizon problem into a two-period optimization problem, which, given his beliefs, is comparatively straightforward to solve. The level of sophistication needed for boundedly optimal decision-making appears to be quite natural: our agent understands simple dynamic trade-offs, can solve simultaneous linear equations and can run simple regressions. Remarkably, with this level of sophistication, the agent can learn over his lifetime how to optimize based on a single realization of his decisions and the resulting states.

4 Extensions

We next consider several extensions of our approach. The first adapts our analysis to take explicit account of exogenous states. This will be particularly convenient for our later applications. We then show how to modify our approach to cover value-function learning and Euler-equation learning.

4.1 Exogenous states

Some state variables are exogenous: their conditional distributions are unaffected by the control choices of the agent. To make boundedly optimal decisions, the agent must forecast future values of exogenous states, but it is not necessary that he track the corresponding shadow prices: there is no trade-off between the agent’s choice and expected realizations of an exogenous state. In our work above, to make clear the connection between shadow-price learning and the Riccati equation, we have ignored the distinction between exogenous and endogenous states; however, in our examination of Euler equation learning in Section 4.2.2, and for the applications in Sections 5 and 6, it is helpful to leverage the simplicity afforded by conditioning only on endogenous states. In this subsection we show that the analogue to Theorem 3 holds when the agent restricts his shadow-price PLM to include only endogenous states as regressors.

Assume that the first \( n_1 \) entries of the of the state vector \( x \) are exogenous and that \( n_2 = n - n_1 \). For the remainder of this subsection, we use the notation

\[
X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}
\]

to emphasize the block decomposition of the \( n \times n \) matrix \( X \), with \( X_{11} \) being an
with \( X_1 \) an \( n_1 \times m \) matrix and \( X_2 \) conformable. With this notation, we may write the matrices capturing the transition dynamics as

\[
A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 \\ B_2 \end{pmatrix},
\]

where the zeros represent conformable matrices with zeros in all entries, and thus capture the exogeneity of \( x_{1t} \).

Endogenous-state SP learners are assumed to know the structure of \( A \) and \( B \), i.e. to know which states are exogenous; and we assume they use this knowledge when making their control decisions, and updating perceived shadow prices, based on the perceived trade-offs between today and tomorrow. These trade-offs are reflected in the following marginal conditions, which we take as behavioral primitives for these agents:

\[
0 = -2W'\bar{x}_t - 2Q\bar{u}_t + \beta \tilde{B}_2'\tilde{E}_t\tilde{\lambda}_{2t+1}
\]

\[
\tilde{\lambda}_{2t} = -2R\bar{x}_t - 2W\bar{u}_t + \beta \bar{A}'_2\bar{E}_t\bar{\lambda}_{2t+1},
\]

where \( \tilde{A} \) and \( \tilde{B} \) are the perceived transition matrices, which are assumed to satisfy \( \tilde{A}_{12} = 0 \) and \( \tilde{B}_1 = 0 \). Here the notation \( \bar{u}_t, \bar{x}_t, \tilde{\lambda}_{2t} \) is used to indicate the control decisions, state realizations and perceived shadow prices of the endogenous SP learner. Note that these primitives are precisely the equations that would be obtained from (27)-(28) under the exogeneity restrictions assumed for the transition dynamics.

For simplicity we focus on stylized learning in which the agent knows the transition dynamics \( A \) and \( B \). To make his control decisions, he forecasts the future values of the endogenous states’ shadow prices, which we denote by \( \tilde{\lambda}_{2t} \), using the PLM

\[
\tilde{\lambda}_{2t} = \tilde{H}\bar{x}_t + \text{noise}.
\]  

Notice that the price of an additional unit of endogenous state may depend on the realization of an exogenous state; hence, we condition \( \tilde{\lambda}_{2t} \) on the entire state vector \( \bar{x}_t \).

We now compare the behavior of an endogenous state SP learner with that of a “full-state” SP learner of Section 3.2, who uses the PLM \( \lambda_t = Hx_t + \text{noise} \). Since under the structural assumptions on \( A \) and \( B \)

\[
B'\tilde{E}_t\lambda_{t+1} = B_2'\tilde{E}_t\lambda_{2t+1} \quad \text{and} \quad (A'\tilde{E}_t\lambda_{t+1})_2 = A_2'\tilde{E}_t\lambda_{2t+1},
\]

25 We assume that the exogenous states are either stationary or unit root: the eigenvalues of \( A_{11} \) lie within the closed unit disk.
where the notation \((\ast)_2\) identifies the last \(n_2\) rows of the matrix \((\ast)\), it follows that \(u_t = \tilde{u}_t, x_t = \tilde{x}_t\) and \(\lambda_{2t} = \tilde{\lambda}_{2t}\) whenever \(H_2 = \tilde{H}\). Thus Theorem 3 applies: by only forecasting endogenous states our agent learns to optimize. Furthermore, it is straightforward to generalize this framework and result to allow for real-time estimation of the transition dynamics and the shadow-prices PLM.

In fact it is clear that this result is more general. Continuing to assume that all agents know the transition dynamics \(A\) and \(B\), two agents forecasting distinct sets of shadow prices will make the same control decisions, provided that both sets include all endogenous states and the agents’ forecasting models of the endogenous shadow prices coincide. In particular, it is natural to assume that agents do not forecast the shadow price of the constant term and when convenient we will make this assumption.

SP learners who forecast some or all exogenous states will additionally asymptotically obtain the shadow prices of these exogenous states, but these shadow prices are not needed or used for decision-making. Also, SP learners of any these types, whether they forecast all, some or none of the exogenous states, will learn to optimize even if they do not know which states are exogenous.

The results of this Section are useful for applications in which particular states are exogenous and in which it is natural to assume that agents understand and impose knowledge of this exogeneity. Because our stability results are unaffected by whether the agent forecasts exogenous shadow prices, in the sequel we will frequently assume that agents make use of this knowledge.

4.2 Bounded optimality: alternative implementations

Although shadow-price learning provides an appealing way to implement bounded rationality, our discussion in the Introduction suggests that there may be alternatives. In this section we show that our basic approach can easily be extended to encompass two closely related alternatives: value-function learning and Euler-equation learning. Shadow-price learning focuses attention on the marginal value of the state, as this is the information required to choose controls, and under SP-learning the agent estimates the shadow prices directly. In contrast, value-function learning infers the shadow prices from an estimate of the value function itself. A second alternative, when the endogenous states exhibit no lagged dependence, is for the agent to estimate shadow prices simply using marginal returns \(r_x\), leading to Euler-equation learning. We consider these two alternatives in turn.

4.2.1 Value-function learning

Our implementation of value-function learning leverages the intuition developed in Section 3.1.1: given a perceived value function \(V\), represented by the symmetric
positive semidefinite matrix $P$, i.e. $V(x) = -x'Px$, the agent chooses control $u = -F(P)x$, which results in a realized, or actual value function $V^P$ represented by $T^\varepsilon(P)$, i.e. $V^P(x) = -x'T^\varepsilon(P)x$. See Lemma 2 for the result and corresponding formulae.

As with shadow-price learning, here we assume that the agent updates his perceptions in a manner consistent with the use of regression analysis, and to model this, some additional notation is required. Let $z(x) = (x_ix_j)_{1 \leq i, j \leq n} \in \mathbb{R}^N$, where $N = n(n+1)/2$, be the vector of relevant regressors, i.e. the collection of all possible pairwise products of states. We remark that $x_1 = 1$, so that $z$ includes a constant and all linear terms $x_i$. Let $\mathcal{S}(n) \subset \mathbb{R}^{n \times n}$ be the vector space of symmetric matrices, and let $\mathcal{M} : \mathbb{R}^N \to \mathcal{S}(n)$ be the vector space isomorphism that provides the following correspondence:

$$q \in \mathbb{R}^N \implies q'z(x) = -x'\mathcal{M}(q)x.$$ 

With this notation, the perceived value function corresponding to perceptions $P$ may be written as depending on analogous perceptions $q = \mathcal{M}^{-1}(P)$:

$$V(x) = -x'Px = q'z(x), \text{ where } \mathcal{M}(q) = P,$$

and because of this, we will speak of perceptions $q \in \mathbb{R}^N$.

To update his perceptions $q$, the agent regresses estimates $\hat{V}(x)$ of the value function on states $z(x)$. Now note that given perceptions $q$, the agent’s control decision is given by $u = -F(\mathcal{M}(q))x$, which may then be used to obtain the estimate $\hat{V}(x)$:

$$\hat{V}(x) = -x'Rx - u'Qu - 2x'Wu + \beta \hat{E}q'z(Ax + Bu + C\varepsilon) = T^{VF}(q)'z(x),$$

where the second equality defines the map $T^{VF} : \mathbb{R}^N \to \mathbb{R}^N$. Now notice

$$T^{VF}(q)'z(x) = -x'Rx - u'Qu - 2x'Wu - \beta \hat{E}(Ax + Bu + C\varepsilon)'\mathcal{M}(q)(Ax + Bu + C\varepsilon) = -x'T^\varepsilon(\mathcal{M}(q))x.$$ 

It follows that $T^{VF} = \mathcal{M}^{-1} \circ T^\varepsilon \circ \mathcal{M}$, i.e. $T^{VF}$ and $T^\varepsilon$ are conjugate operators.

That $T^{VF}$ is related to $T^\varepsilon$ via conjugation has two immediate implications. First, if $q^* = \mathcal{M}^{-1}(P^*_\varepsilon)$ then $T^{VF}(q^*) = q^*$ and $q^*$ corresponds to fully optimal beliefs. Second, since conjugation preserves stability, by Corollary 1 we know that $q^*$ is a Lyapunov stable fixed point of the differential equation $dq/d\tau = T^{VF}(q) - q$. We summarize these findings in the following theorem, which is the value-function learning analog of Theorem 3:

**Theorem 5** Assume LQ.1 – LQ.3 are satisfied. Then $q^* = \mathcal{M}^{-1}(P^*_\varepsilon)$ is a Lyapunov stable fixed of the differential equation $dq/d\tau = T^{VF}(q) - q$, and $V^*(x) = q^* \cdot z(x)$. 

32
We now briefly discuss the real-time algorithm that corresponds to value-function learning. Our agent is assumed to use available data to estimate the transition equation and his perceived value-function \(V(x) = q'z(x)\), and then use these estimates to form forecasts and thereby generate new data. The transition equation is estimated just as in Section 3.2.2. To estimate the value-function at time \(t\), and thus obtain an estimate of the beliefs coefficients \(q_t\), we assume our agent regresses \(\hat{V}_{t-1}\) on \(z(x_{t-1})\) using data \(\{x_{t-1}, \ldots, x_0, \hat{V}_{t-1}, \ldots, \hat{V}_0\}\). Given \(q_t\), the agent’s control choice is

\[ u_t = F(H(q_t), A_t, B_t) x_t, \]

where \(F\) is given by (31), \(H(q_t) = -2M(q_t)\). Finally, the agent’s estimated value at time \(t\) is given by

\[ \hat{V}_t = T^{VF}(q_t, A_t, B_t)' z_t, \]

where we abuse notation somewhat by incorporating into the function \(T^{VF}\) the time-varying estimates of \(A\) and \(B\). A causal recursive dynamic system analogous to (34) may then be used to state and prove a convergence theorem analogous to Theorem 4.

### 4.2.2 Euler-equation learning

We now consider Euler equation learning. It is revealing to begin with the general set-up. Recall the Bellman system (8) associated with the standard dynamic programming problem (1)-(2). The first-order and envelope conditions are

\[ \begin{align*}
0 &= r_u(x_t, u_t)' + \beta E_t g_u(x_t, u_t, \varepsilon_{t+1})' V_x(x_{t+1})' \\
V_x(x_t)' &= r_x(x_t, u_t)' + \beta E_t g_x(x_t, u_t, \varepsilon_{t+1})' V_x(x_{t+1})'.
\end{align*} \tag{37} \tag{38} \]

Stepping (38) ahead one period and inserting into (37) yields

\[ 0 = r_u(x_t, u_t)' + \beta E_t \left( g_u(x_t, u_t, \varepsilon_{t+1})' (r_x(x_{t+1}, u_{t+1})' + \beta g_x(x_{t+1}, u_{t+1}, \varepsilon_{t+2})' V_x(x_{t+2})') \right). \]

Observe that if

\[ E_t g_u(x_t, u_t, \varepsilon_{t+1})' g_x(x_{t+1}, u_{t+1}, \varepsilon_{t+2})' V_x(x_{t+2})' = 0 \tag{39} \]

then we obtain the usual Euler equation

\[ 0 = r_u(x_t, u_t)' + \beta E_t g_u(x_t, u_t, \varepsilon_{t+1})' r_x(x_{t+1}, u_{t+1})'. \tag{40} \]

The condition (39) is met when the transition equation does not exhibit dependence on endogenous state variables. Specifically, assume \(x_{1t+1} = g^1(x_{1t}, \varepsilon_{t+1})\), that is, \(x_{1t}\) is the exogenous component of the state \(x_t\). Further, assume that the endogenous component, \(x_{2t}\), has transition given by \(x_{2t+1} = g^2(u_t, \varepsilon_{t+1})\). It follows that

\[ g_u(x_t, u_t, \varepsilon_{t+1})' g_x(x_{t+1}, u_{t+1}, \varepsilon_{t+2})' = \begin{pmatrix} 0 \\ g_u'(u_t, \varepsilon_{t+1}) \end{pmatrix}' \begin{pmatrix} g^1_{xx}(x_{t+1}, \varepsilon_{t+2}) & 0 \\ 0 & 0 \end{pmatrix}' = 0. \]
and thus condition (39) is satisfied.

We return to the LQ framework to discuss the implementation of Euler-equation learning. Adopting the set-up of Section 4.1, we impose the additional restrictions just described:

\[
A = \begin{pmatrix} A_{11} & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 \\ B_2 \end{pmatrix},
\]

i.e. the transition equation does not exhibit dependence on endogenous state variables. Recalling that

\[
g_t = B; r_u(x_t, u_t)' = -2(Q u_t + W' x_t) \quad \text{and} \quad r_x(x_t, u_t)' = -2(R x_t + W u_t),
\]
equation (40) becomes

\[
Q u_t + W' x_t + \beta B'E_t(R x_{t+1} + W u_{t+1}) = 0.
\]

To implement Euler equation learning, we follow Honkapohja, Mitra, and Evans (2013) and take (41) as the behavioral primitive: our agent forms boundedly rational forecasts of \(x_{t+1}\) and \(u_{t+1}\), and makes his time \(t\) control decision to meet his Euler equation. We adopt stylized learning and for simplicity assume the agent knows the transition matrices \(A\) and \(B\).

The agent is required to forecast his own future control decision, and we provide him a forecasting model that takes the same form as optimal behavior: \(u_t = -F x_t\). The agent computes

\[
\hat{E}_{t+1} x_{t+1} = A x_t + B u_t \quad \text{and} \quad \hat{E}_{t+1} u_{t+1} = -F \hat{E}_{t} x_{t+1},
\]

which may then be used in conjunction with (41) to determine his control decision. The following notation will be helpful: for “appropriate” \(n \times n\) matrix \(X\), set

\[
\Phi(X) = (Q + \beta B' XB)^{-1} \quad \text{and} \quad \Psi(X) = \beta B' X A + W',
\]

where \(X\) is appropriate provided that \(\det(Q + \beta B' XB) \neq 0\). Then, combining (42) with (41) and simplifying yields

\[
u_t = -T^{EL}(F) x_t, \quad \text{where} \quad T^{EL}(F) = \Phi(R - W F) \Psi(R - W F).
\]

Equation (43) may be interpreted as the actual law of motion given the agent’s beliefs \(F\). Finally, the agent updates his forecast of future behavior by regressing the control on the state. This updating process results in a recursive algorithm analogous to (34), which identifies the agent’s behavior over time.

Let \(F^* = \Phi(P^*) \Psi(P^*)\), where \(P^*\) is the solution to the Riccati equation. By Theorem 2, we know that \(u = -F^* x\) is the optimal feedback rule. In the Appendix,
we show \( \Phi(R - WF^*) = \Phi(P^*) \) and \( \Psi(R - WF^*) = \Psi(P^*) \), and thus it follows from (43) that \( T^{E_L}(F^*) = F^* \). Analogous to our earlier results, whether the agent learns over time to behave optimally is determined by the stability of the matrix differential equation \( dF/d\tau = T^{E_L}(F) - F \). In fact we have

**Theorem 6** Assume LQ.1 – LQ.3 are satisfied and let \( F^* = \Phi(P^*)\Psi(P^*) \), where \( P^* \) is the solution to the Riccati equation. Then \( F^* \) is a Lyapunov stable fixed point of the differential equation \( dF/d\tau = T^{E_L}(F) - F \).

We now briefly discuss the real-time algorithm that corresponds to Euler-equation learning. Our agent is assumed to use available data to estimate the transition equation and the coefficients \( F \) of his decision-rule \( u = -Fx \), and then to use these estimates to form forecasts and make decisions, thereby generating new data. The transition equation is estimated just as in Section 3.2.2. To estimate the beliefs coefficients \( F \), we assume our agent regresses \( u_{t-1} \) on \( x_{t-1} \) using data \( \{x_{t-1}, \ldots, x_0, u_{t-1}, \ldots, u_0\} \). Given the time \( t \) estimate \( F_t \), the agent’s control choice is

\[
u_t = -T^{E_L}(F_t, A_t, B_t) x_t,
\]

where again we abuse notation somewhat by incorporating into the function \( T^{E_L} \) the time-varying estimates of \( A \) and \( B \). A causal recursive dynamic system along the lines of (34) may then be used to state and prove a convergence theorem for Euler-equation learning analogous to Theorem 4.

The above results on the Euler-equation learning procedure are based on the assumption that the transition equation does not exhibit dependence on endogenous state variables. Often it is possible in more general circumstances to derive a multi-period Euler equation. We illustrate this point in the context of the example given in Section 5.

### 4.3 Summary

Section 3, which presents our main results, provides theoretical justification for a class of boundedly rational and boundedly optimal decision rules, based on adaptive learning, in which an agent facing a dynamic stochastic optimization problem makes decisions at time \( t \) to meet his perceived optimality conditions, given his beliefs about the values of an extra unit of the state variables in the coming period and his perceived trade-off between controls and states between this period and the next. We fully develop the approach in the context of shadow-price learning in which our agent uses natural statistical procedure to update each period his estimates of the shadow prices of states and of the transition dynamics. Our results show that in the standard Linear-Quadratic setting, an agent following our decision-making and updating rules
will make choices that converge over time to fully optimal decision-making. In the current Section we have extended these convergence results to alternative variations based on value-function learning and Euler-equation learning. Taken together, our results are the bounded optimality counterpart of the now well-established literature on the convergence of least-squares learning to rational expectations. In the remaining sections we show how to apply our results to several standard economic examples.

5 SP-learning in a Crusoe economy

By Theorem 4, an individual with quadratic preferences and facing a linear constraint can learn to make optimal choices provided he makes boundedly rational forecasts and uses boundedly optimal behavior. To illustrate our results, we turn to a simple Crusoe environment with quadratic preferences and linear production specification.

5.1 A Robinson Crusoe economy

A narrative approach may facilitate intuition. Thus, imagine Robinson Crusoe, a middle class Brit, finding himself marooned on a tropical island. An organized young man, he quickly takes stock of his surroundings. He finds that he faces the following problem:

$$\max_{t \geq 0} -E \sum_{t \geq 0} \beta^t ((c_t - b_t)^2 + \phi l_t^2)$$

s.t.  
$$y_t = A_1 s_t + A_2 s_{t-1} + z_t$$  
$$s_{t+1} = y_t - c_t + \mu_{t+1}$$  
$$s_t = l_t$$  
$$b_t = b^* + \Delta(b_{t-1} - b^*) + \xi_t$$  
$$z_t = \rho z_{t-1} + \eta_t,$$

with \(s_{-1}, s_0,\) and \(z_0, b_0\) given.

Here \(y_t\) is fruit and \(c_t\) is consumption of fruit. Equation (45) is Bob’s production function – he can either plant the fruit or eat it, seeds and all – and the double lag captures the production differences between young and old fruit trees. All non-consumed seeds are planted. Some seasons, wind brings in additional seeds from nearby islands; other seasons, local voles eat some of the seeds: thus \(s_{t+1}\), the number of young trees in time \(t + 1\), is given by equation (46), where the white noise term \(\mu_{t+1}\) captures the variation due to wind and voles. Note that \(s_t\) is both the quantity of young trees in \(t\) and the quantity of old trees in \(t + 1\). Weeds are prevalent on the island: without weeding around all the young trees, the weeds rapidly spread everywhere and there is no production at all from any trees: see equation (47). This
is bad news for Bob as he’s not fond of work: $\phi > 0$. Finally, $z_t$ is a productivity shock (rabbits eat saplings and ancient seeds sprout) and $b_t$ is stochastic bliss: see Ch. 5 of Hansen and Sargent (2014) for further discussion of this economy as well as many other examples of economies governed by quadratic objectives and linear transitions.$^{26}$

Some comments on $\phi$ and the constraint (47) are warranted, as they play important roles in our analysis. Because $\phi > 0$ and $l_t = s_t$, it follows that an increased stock of productive trees reduces Bob’s utility. In the language of LQ programming, these assumptions imply that a diverging state $s_t$ is observed and must be avoided: specifically, $\phi > 0$ is necessary for the corresponding matrix pairs to be observable: see Assumption LQ.3. In contrast, and somewhat improbably, Bob’s disheveled American cousin Slob is not at all lazy: his $\phi$ is zero and his behavior, which we analyze in a companion paper, is quite different from British Bob’s.

When he is first marooned, Bob does not know if there is a cyclic weather pattern; but he thinks that if last year was dry this year might be dry as well. Good with numbers, Bob decides to estimate this possible correlation using RLS. Bob also estimates the production function using RLS. Finally, Bob contemplates how much fruit to eat. He decides that his consumption choice should depend on the value of future fruit trees forgone. He concludes that the value of an additional tree tomorrow will depend (linearly) on how many trees there are, and makes a reasoned guess about this dependence. Given this guess, Bob estimates the value of an additional tree tomorrow, and chooses how much fruit to eat today.

Belly full, Bob pauses to reflect on his decisions. Bob realizes his consumption choice depended in part on his estimate about the value of additional trees tomorrow, and that perhaps he should revisit this estimate. He decides that the best way to do this is to contemplate the value of an additional tree today. Bob realizes that an additional young tree today requires weeding, but also provides additional young trees tomorrow (if he planted the young tree’s fruit) and an old tree tomorrow, and that an additional old tree today provides young trees tomorrow (if he planted the old tree’s fruit). Using his estimate of the value of additional trees tomorrow, Bob estimates the value of an additional young tree and an additional old tree today. He then uses these estimates to re-evaluate his guess about the dependence of tree-value on tree-stock. Exhausted by his efforts, Bob falls sound asleep. He should sleep well: Theorem 4 tells us that by following this simple procedure, Bob will learn to optimally exploit his island paradise.

This simple narrative describes the behavior of our boundedly optimal agent. It also points to a subtle behavioral assumption that is more easily examined by adding

---

$^{26}$The only novelty in our economy is the presence of a double lag in production. The double lag is a mechanism to expose the difference between Euler equation learning and SP-learning. Other mechanisms, such as the incorporation of habit persistence in the quadratic objective, yield similar results.
precision to the narrative. To avoid unnecessary complication, set $\Delta = 0, z_t = 0, \varepsilon_t = 0$. The simplified problem becomes

$$\begin{align*}
\max & \quad -\hat{E} \sum_{t \geq 0} \beta^t ((c_t - b^*)^2 + \phi s_t^2) \\
\text{s.t.} & \quad s_{t+1} = A_1 s_t + A_2 s_{t-1} - c_t + \mu_{t+1}
\end{align*}$$

(48)

In notation of Section 3, the state vector is $x_t = (1, s_t, s_{t-1})'$ and the control is $u_t = c_t$. We assume that $\beta A_1 + \beta^2 A_2 > 1$ and $\phi > 0$ to guarantee that steady-state consumption is positive and below bliss: see the Appendix for a detailed analysis of the steady state and fully optimal solution to (48). For the reasons given in Section 4.1 there is no need to forecast the shadow price of the intercept. Thus let $\lambda_{it}$ be the time $t$ value of an additional new tree in time $t$ and $\lambda_{it}^*$ the time $t$ value of an additional old tree in time $t$. Bob guesses that $\lambda_{it}$ depends on $s_t$ and $s_{t-1}$:

$$\lambda_{it} = a_i + b_i s_t + d_i s_{t-1}, \text{ for } i = 1, 2.$$  

(49)

He then forecasts $\lambda_{it+1}$:

$$\hat{E}_t \lambda_{it+1} = a_i + b_i \hat{E}_t s_{t+1} + d_i s_t, \text{ for } i = 1, 2.$$  

(50)

Because he must choose consumption, and therefore savings, before output is realized, Bob estimates the production function and finds

$$\hat{E}_t s_{t+1} = A_{1t} s_t + A_{2t} s_{t-1} - c_t,$$

where $A_t$ is obtained by regressing $s_t$ on $(s_{t-1}, s_{t-2})'$. He concludes that

$$\hat{E}_t \lambda_{it+1} = a_i + (b_i A_{1t} + d_i) s_t + b_i A_{2t} s_{t-1} - b_i c_t,$$  

(51)

which, he notes, depends on his consumption choice today.

Now Bob contemplates his consumption decision. By increasing consumption by $dc$, Bob gains $-2(c_t - b^*)dc$ and loses $\beta E_t \lambda_{it+1} dc$. Bob equates marginal gain with marginal loss, and obtains

$$c_t = b^* - \frac{\beta}{2} E_t \lambda_{it+1}.$$  

(52)

This equation in conjunction with (51) allows Bob to obtain numerical values for his consumption and forecasted shadow prices.\(^{27}\)

Finally, Bob revisits his parameter guesses $a_i, b_i,$ and $d_i$. He first thinks about the benefit of an additional new tree today: it would require weeding, but the fruits could be saved to produce $A_{1t}$ new trees tomorrow, plus he gets an additional old tree tomorrow. He concludes

$$\lambda_{it} = -2\phi s_t + \beta A_{1t} \hat{E}_t \lambda_{it+1} + \beta \hat{E}_t \lambda_{it+1}.$$  

(53)

\(^{27}\)See the Appendix for formal details linking this example to the set-up of Section 3.
He then thinks about the benefit of an additional old tree today: the fruits could be saved to produce $A_{2t}$ new trees tomorrow. Thus

$$\lambda^*_t = \beta A_{2t} \tilde{E}_t \lambda_{t+1}. \quad (54)$$

Because Bob has numerical values for $E_t \lambda_{t+1}$, (53) and (54), together with the estimates $A_{it}$, generate numerical values for the perceived shadow prices. Bob will then use these data to form new estimates of his parameter guesses $a_t, b_t$, and $d_t$. We have the following result.

**Proposition 1** *Robinson Crusoe learns to optimally consume fruit.*

The proof of this proposition is in the Appendix.

This implementation of the narrative above highlights our view of Bob’s behavior: he estimates forecasting models, makes decisions, and collects new data to update his models. Thus Bob understands simple trade-offs, can solve simultaneous linear equations and can run simple regressions. These skills are the minimal requirements for boundedly optimal decision-making in a dynamic, stochastic environment. Remarkably, they are also sufficient for asymptotic optimality.

One might ask whether Bob should be more sophisticated. For example Bob might search for a forecasting model that is consistent with the way shadow prices are subsequently revised: Bob could seek a fixed point of the $T^{SP}$-map. We view this alternative behavioral assumption as too strong, and somewhat unnatural, for two reasons. First, we doubt that in practice most boundedly rational agents explicitly understand the existence of a $T^{SP}$-map. Even if an agent did knew the form of the $T^{SP}$-map, would he recognize that a fixed point is what is wanted to ensure optimal behavior? Why would the agent think such a fixed point even exists? And if it did exist, how would the agent find it? Recognition that a fixed point is important, exists, and is computable is precisely the knowledge afforded those who study dynamic programming; our assumption is that our agent does not have this knowledge, even implicitly.

Our second reason for assuming Bob does not seek a fixed point to the $T^{SP}$-map relates to the above observation that obtaining such a fixed point is equivalent to full optimality given the “perceived transition equations.” However, if the perceived coefficients $A_{it}$ are far from the true coefficients, $A_i$, it is not clear that the behavior dictated by a fixed point to the $T^{SP}$-map is superior to the behavior we assume. Given that computation is unambiguously costly, it makes more sense to us that Bob not iterate on the $T^{SP}$-map for fear that he might make choices based on magnified errors.

The central point of our paper is precisely that with limited sophistication, plausible and natural boundedly optimal decision-making rules converge to fully optimal decision-making.
5.2 Comparing learning mechanisms in a Crusoe economy

The simplified model (48) provides a nice laboratory to compare and contrast SP-learning with Euler equation learning. For simplicity we adopt stylized learning and assume that our agent knows the true values of \( \phi \). Shadow price learning has been detailed in the previous section: the agent has PLM (49), and using this PLM, he forecasts future shadow prices: see (50). These forecasts yield his consumption decision

\[
\begin{align*}
c_t &= \phi_1(a_i, b_i, d_i) + \phi_3(a_i, b_i, d_i)s_t + \phi_3(a_i, b_i, d_i)s_{t-1},
\end{align*}
\]

which he uses to compute shadow price forecasts via (51). We may use these forecasts, together with equations (53) and (54) to determine \( T^{SP} \)-map: see the Appendix for details.

The conditions given in Section 4.2.2 for obtaining a first-order Euler equation are not satisfied for the current example. However, it is possible to obtain the Euler equation

\[
\begin{align*}
c_t - \beta \phi \hat{E}_t s_{t+1} &= \Psi + \beta A_1 \hat{E}_t c_{t+1} + \beta^2 A_2 \hat{E}_t c_{t+2},
\end{align*}
\]

where \( \Psi = b^*(1 - \beta A_1 - \beta^2 A_2) \), which is a second-order Euler equation when \( A_2 \neq 0 \).\(^{28}\)

We can then proceed analogously to Section 4.2.2 and implement Euler equation learning by taking (56) as a behavioral primitive: the agent is assumed to forecast his future consumption behavior and then choose consumption today based on these forecasts. The agent is assumed to form forecasts using a PLM that is functionally consistent with optimal behavior:

\[
\begin{align*}
c_t &= a_3 + b_3 s_t + d_3 s_{t-1}.
\end{align*}
\]

Using this forecasting model and the transition equation

\[
\begin{align*}
s_{t+1} &= A_1 s_t + A_2 s_{t-1} - c_t + \mu_{t+1},
\end{align*}
\]

the agent chooses \( c_t \) to satisfy (56). This behavior can then be used to identify the associated T-map. See the Appendix for a derivation of the T-map.

Our interest here is to compare shadow price learning and Euler equation learning. Although we have not explored this point in the current paper, it is known from the literature on stochastic recursive algorithms that the speed of convergence of the real-time versions of our set-ups is governed by the maximum real parts of the eigenvalues of the T-map’s derivative: this maximum needs to be less than one for stability and larger values lead to slower convergence. Here, if \( A_2 = 0 \) then the agent’s problem has a one dimensional control and a two dimensional state, with one dimension corresponding to a constant: in this case the Euler equation is first-order.

\(^{28}\) The Euler equation can be derived by a direct variational argument. Alternatively it can be obtained from (52), (53) and (54).
and shadow price learning and Euler equation learning are equivalent. However, for $A_2 > 0$ the endogenous state’s dimension is two and the equivalence may break down, as is evidenced by Figure 1, which plots the maximum real part of the eigenvalues for the respective T-map’s derivatives.

![Figure 1: SP learning vs Euler learning: largest eigenvalue](image)

The intuition for the inequivalence of shadow-price learning and Euler equation learning is straightforward: shadow price learning recognizes the two endogenous states and estimates the corresponding PLM. In contrast, under Euler equation learning agents need to understand and combine several structure relationships: they must understand the relationship between the two shadow prices; and, they must combine this understanding with the first-order condition for the controls to eliminate the dependence on these shadow prices. In our simple example, Bob, as a shadow-price learner, would need to combine equations (53) and (54) with his decision rule to obtain the Euler equation (56). In this sense, shadow-price learning requires less structural information than Euler equation learning.

6 SP Learning in a Ramsey Model

Our principal result on SP learning formally establishes that a quadratic regulator facing a linear constraint may, by estimating the transition equation and making control decisions conditional on forecasts of the states’ shadow prices, learn to behave

29 We note that for the general LQ-problem, the relationship between shadow prices may be quite complicated.
optimally. The linear/quadratic environment is key to obtaining analytic results – the resulting stochastic system is linear – and it is arguably natural in some economic settings; however, most DSGE frameworks embrace a more general stochastic decision-making model. As emphasized in Section 2.2, while the theoretical arguments are not known to hold in the general settings, the intuition on which SP learning is built – that agents make decisions contingent on perceived values of states – still has merit and its implementation can be explored computationally. Here, we consider a Ramsey model as a simple example of SP-learning in a non-LQ environment.

6.1 The model and the REE

The modeling environment is entirely standard, and we will present it only briefly. Labor is supplied inelastically. The representative agent’s problem is given by

\[
\max \quad E \sum \beta^t U(c_t)
\]

\[
s_t = (1 + r_t)s_{t-1} + w_t - c_t.
\]

Here, the endogenous state for the agent at time \(t\) is \(s_{t-1}\) and the agent’s control at time \(t\) is \(c_t\). Firms own CRTS technology, which is given by \(f(k) = \zeta \phi(k)\) in per-worker units. Here, \(\log \zeta\) is a stationary AR(1) stochastic productivity shock with small support, namely \(z_t = \varepsilon_t \zeta_{t-1}\), where \(\varepsilon_t\) is iid exogenous with mean one. Factor prices are assigned their marginal products.

The rational expectations equilibrium is the unique bounded path satisfying

\[
U'(c_t) = \beta E_t(1 + z_{t+1}f'(k_{t+1}) - \delta)U'(c_{t+1})
\]

\[
k_{t+1} = z_t f(k_t) + (1 - \delta) k_t - c_t
\]

\[
z_t = \varepsilon_t \zeta_{t-1}.
\]

Near the non-stochastic steady state \((k, c)\), the REE is approximated by

\[
c_t = c^* + Ak_t + Bz_t
\]

\[
k_{t+1} = k^* + \psi k_t - c_t + f(k)z_t
\]

\[
z_t = -\rho + \rho z_{t-1} + \varepsilon_t
\]

for \(\psi = f'(k) + 1 - \delta\) and appropriate \(A, B, c^*\) and \(k^*.\) Notice that we are representing the REE in levels.

Finally, note that if \(U(c) = \log(c), f(k) = k^\alpha,\) and \(\delta = 1,\) then we have that

\[
c_t = (1 - \alpha \beta) z_t k_t^\alpha \quad \text{and} \quad k_{t+1} = \alpha \beta z_t k_t^\alpha.
\]

This formulation will be handy when assessing the quality of our boundedly rational agent’s behavior.
6.2 Bounded optimality

To study bounded-rationality/optimality, it is common at this point (indeed ubiquitous) to linearize the appropriate equations (Euler equations, perhaps combined with LTBC, capital accumulation, and shocks), and only then impose, for example, adaptive learning behavior. We could do exactly this, and we would find that, for the model under examination, the behavior under SP-learning is identical to that implied by Euler-equation learning. Instead, however, for this exercise we continue to take as literal the non-linear economy, and adapt our agent’s behavioral primitives accordingly.30

The agent’s decision problem is given by

\[
\max \quad \mathbb{E}_0 \sum \beta^t U(c_t) \\
\quad s_{t+1} = (1 + r_t)s_t + w_t - c_t.
\]

The agent treats \(w_t\) and \(r_t\) as exogenous, and in line with the literature we assume that \(z_t\) is observed and known by agents to be a determinant of factor prices.

We put the agent’s decision problem in the general form (1)-(2) as follows. The control is \(c_t\) and the state is \(x_t' = (1, s_t, w_t, r_t, z_t)\), with transition function \(g(x_t, c_t, \varepsilon_{t+1})\), where

\[
g(x_t, c_t, \varepsilon_{t+1}) = \begin{pmatrix}
1 \\
(1 + r_t)s_t + w_t - c_t \\
g^{u}(x_t, c_t, \varepsilon_{t+1}) \\
g^{v}(x_t, c_t, \varepsilon_{t+1}) \\
\varepsilon_{t+1}z_t^\mu
\end{pmatrix}.
\]

The agent treats \(w_t, r_t\) and \(z_t\) as exogenous. For the reasons given in Section 4.1 the only relevant shadow price for decision-making measures the value of the variable \(\varepsilon_t\). Under optimal decision-making the shadow price of \(\varepsilon_t\) depends in a non-linear way on the state vector \(x_t\). Instead of assuming that the agent understands and knows the form of this non-linear dependency, we follow the discussion of Section 2.2 and assume that the agent uses a linear model to forecast the shadow price. This is a plausible misspecification consistent with the view that, in general environments involving uncertainty, agents are unlikely to know the true data-generating process and will thus approximate its functional form. Using linear forecasting models is one particularly natural approximation; other common approximations include parsimonious forecasting models that economize on the number of independent variables and their lags.

With this discussion in mind, the PLM for the shadow price, as in Section 2.2, is \(\lambda_t = H x_t\). However, in our representative-agent framework including all of the state

30It would be straightforward to allow the agent to estimate the \(z_t\) process and this would not change our results.
components as regressors would lead to severe multicollinearity problems because \( w_t \) and \( r_t \) are exact functions of \( k_t \) and \( z_t \), and in equilibrium \( s_t = k_t \). To deal with this problem, we need to reduce by two the number of regressors, and for convenience we choose the regressors to be \( \tilde{x}_t = (1, s_t, z_t) \).

As in Section 2.2, the agent needs to forecast \( \tilde{x}_{t+1} \), and in the current setting this is straightforward. Because (58) is the agent’s flow budget constraint, we naturally assume that this equation is known by the agent and used to perfectly forecast \( s_{t+1} \). For simplicity we also assume that the linearized transition for productivity is known so that \( \hat{E}_t z_{t+1} = -\rho + \rho z_t \). Thus

\[
\hat{E}_t \lambda_{t+1} = H \hat{E}_t \tilde{x}_{t+1} = H_\gamma + H_s s_{t+1} + H_z \hat{E}_t z_{t+1}, \text{i.e.}
\]

\[
\hat{E}_t \lambda_{t+1} = H_\gamma - \rho H_z + H_s ((1 + r_t)s_t + w_t) + \rho H_z z_t - H_s c_t.
\]

The agent’s decision and perceived shadow price, via the analogs to (5) and (6), are given by

\[
U'(c_t) = \beta \hat{E}_t \lambda_{t+1}
\]

\[
\lambda_t = \beta (1 + r_t) \hat{E}_t \lambda_{t+1},
\]

where we remark that \( \lambda_t \) satisfies \( \lambda_t = (1 + r_t) U'(c_t) \). Combining the equation for \( \hat{E}_t \lambda_{t+1} \) with \( U'(c_t) = \beta \hat{E}_t \lambda_{t+1} \) we obtain \( c_t = c(s_t, w_t, r_t, z_t, H) \).

The beliefs parameters \( H \) are determined using RLS. Thus \( H_t \), the time \( t \) estimate of \( H \), is obtained by regressing \( \lambda_t \) on \( \tilde{x}_t \) using data \( \{\tilde{x}_0, \ldots, \tilde{x}_{t-1}\} \) and \( \{\lambda_0, \ldots, \lambda_{t-1}\} \).

A recursive causal system determining the evolution of the economy is given by

\[
R_t = R_{t-1} + \gamma_t (\tilde{x}_{t-1} \tilde{x}'_{t-1} - R_{t-1})
\]

\[
H_t = H_{t-1} + \gamma_t R_{t-1}^{-1} \tilde{x}_{t-1} (\lambda_{t-1} - H_{t-1}^t \tilde{x}_{t-1})
\]

\[
z_t = \varepsilon_t z'_{t-1}
\]

\[
w_t = z_t (f(k_t) - f'(k_t) k_t)
\]

\[
r_t = z_t f'(k_t) - \delta
\]

\[
c_t = c(s_t, r_t, w_t, z_t, H_t)
\]

\[
s_{t+1} = (1 + r_t) s_t + w_t - c_t
\]

\[
\lambda_t = (1 + r_t) U'(c_t)
\]

\[
k_{t+1} = s_{t+1}.
\]

To simulate the model, an initial condition is needed. In a REE the true shadow price satisfies \( \lambda^*_t = (1 + r_t) U'(c_t) \). Linearizing this dependence of \( \lambda^*_t \) on \( z_t, k_t \) and \( c_t \), and imposing the linearized REE dependence of \( c_t \) on \( k_t \) and \( z_t \) yields the linear approximation

\[
\lambda_t^* = \hat{H}_\gamma + \hat{H}_k k_t + \hat{H}_z z_t.
\]

\[31\text{The estimate } H_t \text{ is determined using time } t - 1 \text{ data because computation of } \lambda_t \text{ requires } H_t.\]
Because in equilibrium $s_t = k_t$, $\hat{H}$ provides a natural benchmark for the initial value of $H$, and we can also compute the covariance matrix of $(k_t, z_t)$ in the linearized REE to help determine a benchmark for $\mathcal{R}_0$. Initial conditions are then chosen as perturbations of these values. We note that we should not expect the beliefs $\hat{H}$ in our model to converge to $\hat{H}$: indeed, while our agents are using linearized forecasting models, the environment is non-linear and the appropriate equilibrium concept is what is often called a “restricted perceptions equilibrium” in the adaptive learning literature.

6.3 An illustration

As an experiment, we set $\delta = 1$, $f(k) = k^\alpha$ and $U(c) = \log(c)$. The analytic REE shadow price is computed to be

$$\lambda_t^* = \frac{\alpha}{(1 - \alpha \beta)k_t^\alpha}. \quad (59)$$

Note that in this special case there is no dependency of $\lambda_t^*$ on $z_t$.

Given a beliefs vector $H_t$, the agent holds time $t$ perceptions $\lambda_t = H_t' \cdot (1, s_t, z_t)^t$. To assess the quality of our agent’s asymptotic behavior, we run a simulation and record his initial and final-period beliefs. We then plot his initial and final perceived shadow-price dependence against $s$, setting $z = 1$ (its steady-state value), and compare these plots to each other and to the plot of $\lambda^*$ as given by (59): see Figure 2.

In Figure 2, the (red) dashed line is initial perceptions and the (black) solid line is final perceptions. The dashed (blue) curve is the true multiplier in the REE. We note that the long-run perceptions of the agent appear to coincide, to first order, with the true dependence of the (optimal) shadow price on capital. We take this as evidence that even in our non-LQ environment our representative agent’s asymptotic behavior is approximately optimal.
Figure 2: Convergence of beliefs in Ramsey model. Curved dash line gives actual shadow price in REE. Straight dashed line gives initial perceived shadow price. Straight solid line is asymptotic perceived shadow price under learning.

7 Conclusion

The prominent role played by micro-foundations in modern macroeconomic theory has directed researchers to intensely scrutinize the assumption of rationality – an assumption on which these micro-foundations fundamentally rest; and, some researchers have criticized the implied level of sophistication demanded of agents in these micro-founded models as unrealistically high. Rationality on the part of agents consists of two central behavioral primitives: that agents are optimal forecasters; and that agents make optimal decisions given these forecasts. While the macroeconomics learning literature has defended the optimal forecasting ability of agents by showing that agents may learn the economy’s rational expectations equilibrium, and thereby learn to forecast optimally, the way in which agents make decisions while learning to forecast has been given much less attention.

In this paper, we formalize the connection between boundedly rational forecasts and agents’ choices by introducing the notion of bounded optimality. Our agents follow simple behavioral primitives: they use econometric models to forecast one-period ahead shadow prices; and they make control decisions today based on the trade-off
implied by these forecasted prices. We call this learning mechanism shadow-price learning. We find our learning mechanism appealing for a number of reasons: it requires only simple econometric modeling and thus is consistent with the learning literature; it assumes agents make only one-period-ahead forecasts instead of establishing priors over the distributions of all future relevant variables; and it imposes only that agents make decisions based on these one-period-ahead forecasts, rather than requiring agents to solve a dynamic programming problem with parameter uncertainty.

Investigation of SP-learning reveals that it is behaviorally consistent at the agent level: by following our simple behavioral assumptions, an individual facing a standard dynamic programming problem will learn to optimize. Our central stability results are shown to imply asymptotic optimality of alternative implementations of boundedly optimal decision-making, including value-function and Euler-equation learning. Further, we find that SP-learning embeds naturally in the Ramsey model, and clearly this procedure can be used in more elaborate DSGE settings.

It may appear tempting to take our results to suggest that agents should simply be modeled as fully optimizing. However, we think the implications of our results are far-ranging. Since agents have finite lives, learning dynamics will likely be significant in many settings. If there is occasional structural change, transitional dynamics will also be important; and if agents anticipate repeated structural change, say in the form of randomly switching structural transition dynamics, and if as a result they employ discounted least squares, as in Sargent (1999) and Williams (2014), then there will be perpetual learning that can include important escape dynamics. Finally, as we found in the Ramsey model example of Section 6, agents with plausibly misspecified forecasting models will only approximate optimal decision making. As in the adaptive learning literature, we anticipate that our convergence results will be the leading edge of a family of approaches to boundedly optimal decision making. We intend to explore this family of approaches in future work.
Appendix A: Proofs

Proof of Lemma 1: We reproduce the problem here for convenience:

\[ V^P(x) = \max_u - (x'Rx + u'Qu + 2x'Wu) - \beta(Ax + Bu)'P(Ax + Bu). \]

The first-order condition, which is sufficient for optimality and uniqueness of solution because \( P \) is symmetric positive semi-definite, is given by

\[ -2u'Q - 2x'W - 2\beta (x'A'PB + u'B'PB) = 0, \text{ or } \]

\[ u = -(Q + \beta B'PB)^{-1}(\beta B'PA + W')x = -\Phi(P)\Psi(P)x, \text{ where } \]

\[ \Phi(P) = (Q + \beta B'PB)^{-1} \text{ and } \Psi(P) = \beta B'PA + W'. \]

To compute the value function we insert this into the objective:

\[ V^P(x) = -x'(R + \Psi'Q\Phi\Psi - 2W\Phi\Psi + \beta(A - B\Phi\Psi)'P(A - B\Phi\Psi))x \]

\[ = -x'(R + \Psi'Q\Phi\Psi - 2W\Phi\Psi)x \]

\[ -x'(\beta A'PA + \beta \Psi' B'PB\Phi\Psi - \beta A'PB\Phi\Psi - \beta \Psi' B'PA)x \]

\[ = -x'(R + \beta A'PA)x \]

\[ -x'(\Psi' (Q + \beta B'PB)\Phi\Psi - 2W\Phi\Psi - \beta A'PB\Phi\Psi - \beta \Psi' B'PA)x \]

\[ = -x'(R + \beta A'PA + \Psi' (\Psi - \beta B'PA) - 2W\Phi\Psi - \beta A'PB\Phi\Psi)x \]

\[ = -x'(R + \beta A'PA + \Psi' W' - (2W + \beta A'PB)\Phi\Psi)x \]

\[ = -x'(R + \beta A'PA - \Psi' \Phi\Psi)x, \]

where the last step is obtained by noting that \( x'\Psi'\Phi'W'x = x'W\Phi\Psi x. \)

Proof of Lemma 2: Observe that

\[ E ((Ax + Bu + C\varepsilon)'P(Ax + Bu + C\varepsilon)|x, u) = \beta(Ax + Bu)'P(Ax + Bu) - \beta \delta(P), \]

where \( \delta(P) = -\text{tr}\left(\sigma^2C\varepsilon C'\varepsilon\right). \)

This follows since

\[ E\varepsilon' C'P C\varepsilon = \text{tr}(E\varepsilon' C'P C\varepsilon) = E\text{tr}(\varepsilon' C'P C\varepsilon) \]

\[ = E\text{tr}(PC\varepsilon\varepsilon'C') = \text{tr}(PCE(\varepsilon\varepsilon'C')) \]

\[ = \text{tr}(PC\sigma^2\varepsilon I_n C') = \text{tr}\left(\sigma^2PCC'\right). \]

Since \( \delta(P) \) does not depend on \( u \), it follows that, given \( P \), the control choice that solves (12) solves (14). Using Lemma 1 this establishes item 1. Noting that the stochastic
objective is the deterministic objective shifted by $\beta \delta(P)$ and inserting $u = -F(P)x$ into the objective of (14) yields

$$-x'T^\varepsilon(P)x = -x'T(P)x + \beta \delta(P) = -x'(T(P) - \beta \Delta(P))x,$$

where the second equality follow from the fact that the first component of the state equals one. This establishes item 2.

To prove the last statement, first note that $\partial \delta(P)/\partial P_{11} = 0$. This follows because the first row of $C$, and hence the first row of $CC'$ is zero. Now, let $\tilde{P}$ be a fixed point of $T$, and let $\tilde{P}_\varepsilon$ be given by (15). We now compute

$$T^\varepsilon (\tilde{P}_\varepsilon) = T \left( \tilde{P} - \frac{\beta}{1 - \beta} \Delta(\tilde{P}) \right) - \beta \Delta \left( \tilde{P} - \frac{\beta}{1 - \beta} \Delta(\tilde{P}) \right)$$

$$= T \left( \tilde{P} - \frac{\beta}{1 - \beta} \Delta(\tilde{P}) \right) - \beta \Delta (\tilde{P})$$

$$= T (\tilde{P}) - \frac{\beta^2}{1 - \beta} \Delta(\tilde{P}) - \beta \Delta (\tilde{P})$$

$$= \tilde{P} - \frac{\beta}{1 - \beta} \Delta(\tilde{P}) = \tilde{P}_\varepsilon.$$

To establish the third equality, we show that for any perceptions $P \in \mathcal{U}$,

$$T(P + \Upsilon) = T(P) + \beta \Upsilon,$$

(60)

where $\Upsilon = v \oplus 0_{n-1 \times n-1}$ simply captures a perturbation of the $(1,1)$ entry of $P$. To establish this equation first note that by Remark 1, $F(P + \Upsilon) = F(P)$. It follows that

$$-x'T(P + \Upsilon)x = -(x'Rx + u'Qu + 2x'Wu) - \beta (Ax + Bu)'(P + \Upsilon)(Ax + Bu),$$

where $u$ is the optimal control decision given perceptions $P$. Straightforward algebra shows that

$$-x'T(P + \Upsilon)x = -x'T(P)x - \beta (Ax + Bu)'\Upsilon(Ax + Bu).$$

By the forms of $A$ and $B$ we have that $B'\Upsilon = 0$, $\Upsilon B = 0$ and $x'A'\Upsilon A = \Upsilon$. Thus

$$-x'T(P + \Upsilon)x = -x'(T(P) + \beta \Upsilon)x.$$

This establishes (60), which completes the proof. ■

**Proof of Lemma 3:** To establish the first equation, let

$$eq1(P) = R + \beta A'PA - (\beta A'PB + W)\Phi(P)(\beta B'PA + W')$$

$$eq2(P) = \hat{R} + \hat{A}'\hat{P}\hat{A} - \hat{A}'\hat{P}\hat{B}\Phi(P)\hat{B}'\hat{P}\hat{A}.$$
Our goal is to show \( eq1(P) = eq2(P) \). First, we expand each equation.

\[
eq 1(P) = R + \beta A'PA - \beta A'PB\Phi(P)B'PA\beta - W\Phi(P)W' \\
- \beta A'PB\Phi(P)W' - W\Phi(P)B'PA\beta
\]

\[
eq 2(P) = R - WQ^{-1}QQ^{-1}W' + \beta A'PA + \beta WQ^{-1}B'PBQ^{-1}W' \\
- \beta A'PBQ^{-1}W' - \beta WQ^{-1}B'PA - \beta A'PB\Phi(P)B'PA\beta \\
- \beta WQ^{-1}B'PB\Phi(P)B'PBQ^{-1}W'\beta \\
+ \beta A'PB\Phi(P)B'PBQ^{-1}W'\beta + \beta WQ^{-1}B'PB\Phi(P)B'PA\beta.
\]

For notational convenience, we will number each summand of each equation in the natural way, being sure to incorporate the sign. Thus \( eq1.2 = \beta A'PA \), \( eq2.2 = -WQ^{-1}QQ^{-1}W' \), and \( eq1 = eq1.1 + \ldots + eq1.6 \), where we drop the reference to \( P \) to simplify notation. Now notice

\[
\text{eq2.2} + \text{eq2.4} + \text{eq2.8} = WQ^{-1}(-Q + \beta B'PB - \beta B'PB\Phi(P)\beta B'PB)Q^{-1}W' \\
\text{eq2.5} + \text{eq2.9} = \beta A'PB (\Phi(P)\beta B'PB - I_m) Q^{-1}W' \\
(61) \text{eq2.6} + \text{eq2.10} = WQ^{-1}(\beta B'PB) \Phi(P) - I_m) \beta B'PA.
\]

Since

\[
-Q + \beta B'PB - \beta B'PB\Phi(P)\beta B'PB = -Q + \beta B'PB\Phi(P) (\Phi(P)^{-1} - \beta B'PB) \\
= -\Phi(P)^{-1}\Phi(P)Q + \beta B'PB\Phi(P)Q \\
= -Q\Phi(P)Q, \quad \text{and}
\]

\[
\Phi(P)\beta B'PB - I_m = \Phi(P)(\beta B'PB - \Phi(P)^{-1}) = -\Phi(P)Q \\
\beta B'PB\Phi(P) - I_m = (\beta B'PB - \Phi(P)^{-1})\Phi(P) = -Q\Phi(P),
\]

we may write (61) as

\[
\text{eq2.2} + \text{eq2.4} + \text{eq2.8} = -W\Phi(P)W' \\
\text{eq2.5} + \text{eq2.9} = -\beta A'PB\Phi(P)W' \\
\text{eq2.6} + \text{eq2.10} = -W\Phi(P)\beta B'PA.
\]

It follows that

\[
eq 2 = eq2.1 + eq2.3 + eq2.7 + (eq2.2 + eq2.4 + eq2.8) \\
+ (eq2.5 + eq2.9) + (eq2.6 + eq2.10) \\
= eq1.1 + eq1.2 + eq1.3 + \text{eq1.4} + eq1.5 + eq1.6 = eq1,
\]

thus establishing item 1.
To demonstrate item 2, compute
\[
\Omega(P')P\Omega(P) + \hat{F}(P')' Q \hat{F}(P) + \hat{R} = \hat{A}' P \hat{A} + \hat{F}(P')' \left( Q + \hat{B}' P \hat{B} \right) \hat{F}(P) - \hat{F}(P')' \hat{B}' P \hat{A} - \hat{A}' P \hat{B} \hat{F}(P) + \hat{R}
\]
\[
= \hat{A}' P \hat{A} + \hat{A}' P \hat{B} \left( Q + \hat{B}' P \hat{B} \right)^{-1} \hat{B}' P \hat{A} - \hat{A}' P \hat{B} (Q + \hat{B}' P \hat{B})^{-1} \hat{B}' P \hat{A}
\]
\[
- \hat{A}' P \hat{B} \left( Q + \hat{B}' P \hat{B} \right)^{-1} \hat{B}' P \hat{A} + \hat{R}
\]
\[
= \hat{R} + \hat{A}' P \hat{A} - \hat{A}' P \hat{B} \left( Q + \hat{B}' P \hat{B} \right)^{-1} \hat{B}' P \hat{A} = T(P).
\]
where the last equality holds by item 1. ■

**Proof of Theorem 1.** We begin with a well-known series computation that will facilitate our work:

**Lemma 4** If $M$ and $N$ are $n \times n$ matrices and if the eigenvalues of $M$ have modulus less than one then there is a matrix $S$ such that
\[
S = \sum_{t \geq 0} (M')^t N (M)^t.
\]
Furthermore, $S$ satisfies $S = M'SM + N$.

**Proof.** Since the eigenvalues of $M$ have modulus less than one, there is a unique solution to the linear system $S = M'SM + N$
\[
vec(S) = (I_n - M' \otimes M')^{-1} vec(N).
\]
Now let $S_0 = N$ and $S_n = M'S_{n-1}M + N$. Then
\[
S_n = \sum_{t=0}^{n} (M')^t N (M)^t.
\]
We compute
\[
S - S_n = M'SM + N - (M'S_{n-1}M + N)
\]
\[
= M'(S - S_{n-1})M = \ldots = (M')^n(S - N)(M)^n \to 0,
\]
where the ellipses indicate induction. ■

We now proceed with the proof of Theorem 1, which involves a series of steps.

**Step 1:** We first consider a finite horizon problem. If $P$ an $n \times n$, symmetric, positive semi-definite matrix, define
\[
J^P(x) = \min_u x' \hat{R} x + u' \hat{Q} u + (\hat{A} x + \hat{B} u)' P (\hat{A} x + \hat{B} u).
\]
The standard computation shows that this problem is solved by \( u = -\hat{F}(P)x \), so that
\[
J^P(x) = x' \left( \Omega(P)'P\Omega(P)+\hat{F}(P)'Q\hat{F}(P)+\hat{R} \right) x = x'T(P)x
\]
where the second equality follows from part 2 of Lemma 3. Now consider the finite horizon problem
\[
V_N(x) = \min \sum_{t=0}^{N-1} \left( x_t'\hat{R}x_t + u_t'Qu_t \right)
\]
where here it is implicitly assumed that the transition \( x_{t+1} = \hat{A}x_t + \hat{B}u_t, \ x_0 = x \).

We note that (62) is the finite horizon version of the transformed problem (18). For notational simplicity, here and throughout the proof, we use \( (\hat{x}, \hat{u}) \) instead of \( (\tilde{x}, \tilde{u}) \).

Notice that \( V_1(x) = x'T(0)x \). Now we induct on \( N \):
\[
V_N(x) = \min \sum_{t=0}^{N-1} \left( x_t'\hat{R}x_t + u_t'Qu_t \right)
\]
\[
= \min \left( x_0'\hat{R}x_0 + u_0'Qu_0 + \sum_{t=1}^{N-1} \left( x_t'\hat{R}x_t + u_t'Qu_t \right) \right)
\]
\[
= \min \left( x'\hat{R}x + u_0'Qu_0 + (\hat{A}x + \hat{B}u_0)'T^{N-1}(0)(\hat{A}x + \hat{B}u_0) \right) = x'T^N(0)x,
\]
where \( T^N(0) \) identifies the value function for the finite horizon problem (62).

**Step 2:** We claim that there is an \( n \times n \), symmetric, positive semi-definite matrix \( \hat{P} \) satisfying \( x'T^N(0)x \leq x'\hat{P}x \) for all \( x \). To see this, let \( F \) be any matrix that stabilizes \( (\hat{A}, \hat{B}) \). Let \( \{\tilde{x}_t\} \) be the state sequence generated by the usual transition equation (with \( \tilde{x}_0 = x \)) and the policy \( u = -Fx \). Then
\[
V_N(x) = x'T^N(0)x \leq \sum_{t=0}^{N-1} \tilde{x}_t' \left( \hat{R} + F'QF \right) \tilde{x}_t
\]
\[
= x' \left( \sum_{t=0}^{N-1} \left( \hat{A}' - F\hat{B}' \right)^t \left( \hat{R} + F'QF \right) \left( \hat{A} - \hat{B}F \right)^t \right) x
\]
\[
\leq x' \left( \sum_{t=0}^{\infty} \left( \hat{A}' - F\hat{B}' \right)^t \left( \hat{R} + F'QF \right) \left( \hat{A} - \hat{B}F \right)^t \right) x \equiv x'\hat{P}x,
\]
where the convergence of the series is guaranteed by Lemma 4.
Step 3: We claim \( x^T N(0)x \leq x^T N(1)(0)x \). To see this, let \( \{ x^N, u^N \} \) solve (62). Then

\[
x^T N(0)x \leq \sum_{t=0}^{N-1} \left( (x_t^N)^{N+1} \dot{R} (x_t^N) + (u_t^N)^{N+1} Q (u_t^N) \right)
\]

\[
\leq \sum_{t=0}^{N} \left( (x_t^N)^{N+1} \dot{R} (x_t^N) + (u_t^N)^{N+1} Q (u_t^N) \right) = x^T N(1)(0)x.
\]

Step 4: We show that there is an \( n \times n \), symmetric, positive semi-definite matrix \( P^* \) so that \( T^N(0) \rightarrow P^* \). Let \( e_i \) be the usual \( n \)-dimensional coordinate vector, and notice that if \( M \) is any \( n \times n \) matrix then \( e'_i Mc_i = M_{ii} \). By steps 2 and 3, \( e'_i T^N(0) e_i \) is an increasing sequence bounded above by \( \bar{P}_{ii} \), and thus converges. More generally, if \( v \) is an \( n \)-dimensional vector with 1s in the \( i_1, \ldots , i_r \) entries and zeros elsewhere then

\[
v^TMv = \sum_{j=1}^{r} \sum_{k=1}^{r} M_{ij,ik}.
\]

By steps 2 and 3, \( e'_i T^N(0) e_i \) is an increasing sequence bounded above by \( \bar{P}_{ii} \), and thus converges. Now let \( v = (1, 1, 0, \ldots , 0) \). Then by (63)

\[
v^T N(0)v = T^N(0)_{11} + T^N(0)_{22} + T^N(0)_{12} + T^N(0)_{21} = T^N(0)_{11} + T^N(0)_{22} + 2T^N(0)_{12},
\]

where the second equality follows from the fact that \( T \) preserves symmetry. Since \( v^T N(0)v \) is increasing and bounded above by \( v^T \bar{P} v \) it follows that the sum \( T^N(0)_{11} + T^N(0)_{22} + 2T^N(0)_{12} \) converges. Since the diagonal elements have already been shown to converge, we conclude that \( T^N(0)_{12} \) converges. Continuing to work in this way with (63) we conclude that \( T^N(0) \) converges to a symmetric matrix \( P^* \). That \( P^* \) is positive semi-definite follows from the fact that the zero matrix is positive semi-definite, and by part 2 of Lemma 3, the T-map preserves this property: thus \( x^T P^* x = \lim x^T N(0)x \geq 0 \).

Step 5: To see that \( T(P^*) = P^* \), we work as follows: Let

\[
T(P^*) = T \left( \lim_{N \to \infty} T^N(0) \right) = \lim_{N \to \infty} T \left( T^N(0) \right) = \lim_{N \to \infty} T^{N+1}(0)P^*,
\]

where the second equality follows from the continuity of \( T \).

Step 6: We claim

\[
\Omega(P) = \beta^{1/2} A - \beta^{1/2} B(Q + \beta B' PB)^{-1}(\beta B' PA + W'),
\]

53
Indeed

\[
\Omega(P) = \hat{A} - \hat{B}(Q + \hat{B}'P\hat{B})^{-1}\hat{B}'P\hat{A}
\]

\[
= \beta^{1/2}A - \beta^{1/2}BQ^{-1}W' - \beta^{1/2}B(Q + \beta B'PB)^{-1}\beta^{1/2}B'P(A - BQ^{-1}W')\beta^{1/2}
\]

\[
= \beta^{1/2}A - \beta^{1/2}B(Q + \beta B'PB)^{-1}(Q + \beta B'PB)Q^{-1}W' - \beta^{1/2}B(Q + \beta B'PB)^{-1}\beta^{1/2}B'P(A - BQ^{-1}W')\beta^{1/2}
\]

\[
= \beta^{1/2}A - \beta^{1/2}B(Q + \beta B'PB)^{-1} \times (Q + \beta B'PB)Q^{-1}W' + \beta B'P(A - BQ^{-1}W'))
\]

\[
= \beta^{1/2}A - \beta^{1/2}B(Q + \beta B'PB)^{-1}(\beta B'PA + W').
\]

**Step 7:** We turn to the stability of \(D(T_v)(\text{vec}(P^*))\), and use the following notation: for \(P \in \mathcal{U}\) we set

\[
\Psi(P) = \beta B'PA + W' \quad \text{and} \quad \Phi(P) = (Q + \beta B'PB)^{-1}.
\]

It follows that

\[
T(P) = R + \beta A'PA - \Psi(P')'\Phi(P)\Psi(P).
\]

Working with matrix differentials, and noting that

\[
d\Phi(P) = -\beta\Phi(P)'B'dPB\Phi(P) \quad \text{and} \quad d(\Psi'(P'))' = (\beta B'dP'A)' = \beta A'dPB,
\]

we have

\[
dT = \beta^{1/2}A'dPA\beta^{1/2} - \beta^{1/2}A'dPB\Phi(P)\Psi(P)\beta^{1/2}
\]

\[
+ \beta^{1/2}\Psi(P')'\Phi(P)B'dPB\Phi(P)\Psi(P)\beta^{1/2} - \beta^{1/2}\Psi(P')'\Phi(P)B'dPA\beta^{1/2}
\]

\[
= (\beta^{1/2}A' - \beta^{1/2}\Psi(P')'\Phi(P)B')dP(\beta^{1/2}A - \beta^{1/2}B\Phi(P)\Psi(P)) = \Omega(P')'dP\Omega(P),
\]

where the last equality follows from step 6. Using \(\text{vec}(XYZ) = (Z' \otimes X)\text{vec}(Y)\) for conformable matrices \(X, Y, Z\) it follows that\(^3\) \(\text{vec}(dT) = (\Omega(P)' \otimes \Omega(P')')\text{vec}(dP)\) or \(D(T_v)(\text{vec}(P)) = \Omega(P')' \otimes \Omega(P')'\).

We are interested in computing the eigenvalues of \(D(T_v)(\text{vec}(P^*))\). Since \(P^*\) is symmetric, since the eigenvalues of \(\Omega(P^*)'\) are the same as the eigenvalues of \(\Omega(P^*)\), and since the eigenvalues of the Kronecker product are the products of the eigenvalues,

\(^3\)This result, as well as the result that the eigenvalues of \(X \otimes Y\) where \(X\) and \(Y\) are square matrices is equal to the products of the eigenvalues of \(X\) and the eigenvalues of \(Y\), can be found in Section 5.7 of Evans and Honkapohja (2001) and Chapters 8 and 9 of Magnus and Neudecker (1988)
it suffices to show that any eigenvalue $\mu$ of $\Omega(P^*)$ is strictly inside the unit circle. We will follow the elegant proof of Anderson and Moore (1979). We work by contradiction. Let $v \neq 0$ satisfy $\Omega(P^*)v = \mu v$ and assume $|\mu| \geq 1$. Since $P^*$ is a symmetric fixed point of $T$, we may use item 2 of Lemma 3 to write

$$P^* = \Omega(P^*) \, ^t P^* \Omega(P^*) + \hat{F}(P^*)^t Q \hat{F}(P^*) + \hat{R}. \tag{64}$$

Acting on the left of (64) by $v'$ and on the right by $v$, and exploiting $\Omega(P^*)v = \mu v$, we get

$$(1 - |\mu|^2)v' P^* v = v' \hat{F}(P^*)^t Q \hat{F}(P^*) v + v' \hat{D} \hat{D}' v,$$

where we recall that $\hat{R} = \hat{D} \hat{D}'$. Since $P^*$ is positive semi-definite, the left-hand-side is non-positive and the right-hand-side is non-negative, so that both sides must be zero, and thus both terms on the right-hand-side must be zero as well. Since $Q$ is positive definite, $\hat{F}(P^*) v = 0$. Since $\Omega(P^*) = \hat{A} - \hat{B} \hat{F}(P^*)$, it follows that $\Omega(P^*) v = \hat{A} v = \mu v$, i.e. $v$ is an eigenvector of $\hat{A}$. Also, since $\hat{D}$ has full rank, $v' \hat{D} \hat{D}' v = 0$ implies $\hat{D}' v = 0$. But by assumption, $(\hat{A}, \hat{D})$ is detectable, which means $|\mu| < 1$, thus yielding the desired contradiction, and step 7 is established.

**Step 8:** Now let $P_0$ be an $n \times n$, symmetric, positive semi-definite matrix. We want to show $T^N(P_0) \to P^*$. An argument analogous to that provided in step 1 shows

$$x' T^N(P_0) x = \min \left( x'_N P_0 x_N + \sum_{t=0}^{N-1} \left( x_t' \hat{R} x_t + u_t' Q u_t \right) \right)$$

$$x_{t+1} = \hat{A} x_t + \hat{B} u_t, \; x_0 = x$$

Because $x'_N P_0 x_N \geq 0$, it follows that $x' T^N(0) x \leq x' T^N(P_0) x$.

Next consider the policy function $u = -\hat{F}(P^*) x$. By Remark 2, the corresponding state dynamics is given by $x_t = \Omega(P^*) x_0$. It follows that $x' T^N(P_0) x \leq x' G_N(P_0) x$, where $G_N(P_0)$ measures the value of the policy $\hat{F}(P^*)$, that is,

$$G_N(P_0) = (\Omega(P^*))^N P_0 (\Omega(P^*))^N + \sum_{t=0}^{N-1} \left( (\Omega(P^*))^t \right) \left( \hat{R} + \hat{F}(P^*)^t Q \hat{F}(P^*) \right) (\Omega(P^*))^t.$$

Since $\Omega(P^*)$ is stable, $(\Omega(P^*))^N P_0 (\Omega(P^*))^N \to 0$, and by Lemma 4

$$\sum_{t=0}^{N-1} \left( (\Omega(P^*))^t \right) \left( \hat{R} + \hat{F}(P^*)^t Q \hat{F}(P^*) \right) (\Omega(P^*))^t \to P^*.$$

Since $x' T^N(0) x \leq x' T^N(P_0) x \leq x' G_N(P_0) x$, and since both $G_N(P_0)$ and $T^N(0)$ converge to $P^*$, step 8 is complete.

---

33 If $v$ is complex, then $v'$ is taken to be the conjugate transpose of $v$. 55
Step 9: With this step we show uniqueness, thus completing the proof. Suppose \( \tilde{P} \) is a symmetric positive definite fixed point of the T-map. Then \( \tilde{P} = T(\tilde{P}) = T^N(\tilde{P}) \rightarrow P^* \). Thus \( \tilde{P} = P^* \). □

Proof of Corollary 1: First notice that \( T^*_v = T_v - \frac{\beta}{1-\beta} \Delta_v \). Since \( \Delta(P) = \delta(P) \oplus 0_{n-1 \times n-1} \) and \( \partial \delta(P)/\partial P_{11} = 0 \) it follows that

\[
\text{eig} \circ DT^*_v (\text{vec}(P)) = \text{eig} \circ DT_v (\text{vec}(P)).
\tag{65}
\]

Next, notice that, by (60), \( \partial T(P)_{11}/\partial P_{11} = \beta \) and \( \partial T(P)_{ij}/\partial P_{11} = 0 \) for \( i, j \) not both one. It follows that for \( w \in \mathbb{R}^{n^2} \),

\[
DT_v(w)_{i1} = \begin{cases} \beta & i = 1 \\ 0 & i > 1 \end{cases}.
\]

We conclude that if \( Y = v \oplus 0_{n-1 \times n-1} \) then

\[
\text{eig} \circ DT_v (\text{vec}(P + Y)) = \text{eig} \circ DT_v (\text{vec}(P)),
\]

which shows that

\[
\text{eig} \circ DT_v (\text{vec}(P^*)) = \text{eig} \circ DT_v (\text{vec}(P^*)).
\]

The result follows from (65) and Lemma 2. □

Discussion of Theorem 2: See Appendix B.

Proof of Theorem 3. It is straightforward to show that \( T^{SP}(H) = -2T \left(-\frac{H}{2}\right) \). It follows that

\[
T^{SP}_v (\text{vec}(H)) = -2T_v \left(\text{vec} \left(-\frac{H}{2}\right)\right).
\]

By the chain rule,

\[
D \left(T^{SP}_v \right) (\text{vec}(H^*)) = D \left(T_v \right) \left(\text{vec} \left(-\frac{H^*}{2}\right)\right) = D \left(T_v \right) (\text{vec}(P^*)),
\]

and the result follows from Theorem 1. □

Proof of Theorem 4. The proof involves using the theory of stochastic recursive algorithms to show that the asymptotic behavior of our system is governed by the Lyapunov stability of the differential system

\[
\frac{dH}{d\tau} = T^{SP}(H, A, B) - H.
\]

The proof is then completed by appealing to Theorem 3.
Recall the dynamic system under consideration:
\[
\begin{align*}
x_t &= Ax_{t-1} + Bu_{t-1} + C\varepsilon_t, \\
R_t &= R_{t-1} + \gamma_t (x_t'x_t - R_{t-1}) \\
H_t' &= H_t' + \gamma_t R_{t-1}^{-1} x_{t-1}^t(x_t - H_{t-1}x_{t-1})' \\
\hat{R}_t &= \hat{R}_{t-1} + \gamma_t \left( \begin{pmatrix} x_t - x_{t-1} \\ u_{t-1} \end{pmatrix} \right) \left( x_{t-1} - \begin{pmatrix} A_{t-1} & B_{t-1} \end{pmatrix} \begin{pmatrix} x_{t-1} \\ u_{t-1} \end{pmatrix} \right)'
\end{align*}
\]
(66)

where \(0 < \vartheta, \kappa \leq 1\) and \(N\) is a non-negative integer. To apply the theory of stochastic recursive algorithms, we must place our system in the following form:
\[
\begin{align*}
\theta_t &= \theta_{t-1} + \gamma_t H(\theta_{t-1}, X_t) \\
X_t &= A(\theta_{t-1})X_{t-1} + B(\theta_{t-1})\varepsilon_t.
\end{align*}
\]
(67, 68)

Here \(\theta \in \mathbb{R}^M\) for some \(M\). For extensive details on the asymptotic theory of recursive algorithms such as this, see Chapter 6 of Evans and Honkapohja (2001).\(^{34}\) Note that \(R_t, \hat{R}_t, A_t'\) and \(B_t'\) are matrices and \(t\) is a column vector. Therefore, we identify the space of matrices with \(\mathbb{R}^M\) for appropriate \(M\) in the usual way using the \(\text{vec}\) operator.

With these new variables we may define \(\phi_t = (A_t', B_t')'\), and
\[
\begin{align*}
\theta_t &= \begin{pmatrix} \text{vec}(R_t) \\
\text{vec}(H_t) \\
\text{vec}(\hat{R}_t) \\
\text{vec}(\phi_t)\end{pmatrix} \\
X_t &= \begin{pmatrix} x_t \\
x_{t-1} \\
\end{pmatrix}.
\end{align*}
\]

Note that \(\theta \in \mathbb{R}^{2n^2} \times \mathbb{R}^{n^2} \times \mathbb{R}^{(n+m)^2} \times \mathbb{R}^{n(n+m)} = \mathbb{R}^M\) for \(M = 2n^2 + (n+m)^2 + n(n+m)\).

Fixing an estimate \(\hat{\theta}\), define the matrices \(A(\theta)\) and \(B(\theta)\) as follows:
\[
\begin{align*}
A(\theta) &= \begin{pmatrix} A + BF(H, \tilde{A}, \tilde{B}) & 0 & 0 \\
I_n & 0 & 0 \end{pmatrix} \\
B(\theta) &= \begin{pmatrix} C \\
0 \\
0 \end{pmatrix},
\end{align*}
\]

where \(H, \tilde{A}, \tilde{B}\) are the matrices corresponding to the relevant components of \(\theta\).

\(^{34}\) Other key references are Ljung (1977) and Marcet and Sargent (1989).
We now restrict attention to an open set $W \subset \mathbb{R}^M$ such that whenever $\theta \in W$ it follows that $T^{SP}$ is well-defined, $\mathcal{R}^{-1}$ and $\tilde{\mathcal{R}}^{-1}$ exist, and the eigenvalues of $\mathcal{A}(\theta)$ have modulus strictly less than one. Given $\theta \in W$, define $\tilde{X}_t(\theta)$ as the stochastic process $\tilde{X}_t(\theta) = \mathcal{A}(\theta)\tilde{X}_{t-1}(\theta) + \mathcal{B}(\theta)\varepsilon_t$. Let $\tilde{x}_t(\theta)$ denote the first $n$ components of $\tilde{X}_t(\theta)$ and $\tilde{u}_{t-1}(\theta)$ denote the last $m$ components of $\tilde{X}_t(\theta)$. With the restriction on $W$ the following limits are well defined:

$$\mathcal{N}(H, \tilde{A}, \tilde{B}) = \lim_{t \to \infty} E\tilde{x}_t(\theta)^t \tilde{x}_t(\theta)'$$ and $\mathcal{N}(H, \tilde{A}, \tilde{B}) = \lim_{t \to \infty} E\left(\begin{pmatrix} \tilde{x}_t(\theta) \\ \tilde{u}_t(\theta) \end{pmatrix} \right) \left( \begin{pmatrix} \tilde{x}_t(\theta)' \\ \tilde{u}_t(\theta)' \end{pmatrix} \right)$.

Set

$$\theta^* = \left( \begin{array}{c} \text{vec}(\mathcal{N}(H^*, A, B)) \\ \text{vec}(H^*) \\ \text{vec}(\tilde{\mathcal{N}}(H^*, A, B)) \\ \text{vec}((A', B')') \end{array} \right)$$

where clearly $\theta^* \in W$.

We now write the recursion (66) in the form (67)-(68). To this end, we define the function $\mathcal{H}(\cdot, X) : W \to \mathbb{R}^M$ component-wise as follows:

$$\mathcal{H}^1(\theta_{t-1}, X_t) = \text{vec} \left( x_t x_t' - \mathcal{R}_{t-1} \right)$$

$$\mathcal{H}^2(\theta_{t-1}, X_t) = \text{vec} \left( \mathcal{R}_{t-1}^{-1} x_{t-1} \left( (T^{SP}(H_{t-1}, A_{t-1}, B_{t-1}) - H_{t-1}) x_{t-1} \right)' \right)$$

$$\mathcal{H}^3(\theta_{t-1}, X_t) = \text{vec} \left( \begin{pmatrix} x_{t-1} \\ u_{t-1} \end{pmatrix} \begin{pmatrix} x_t', u_t' \end{pmatrix} - \tilde{\mathcal{R}}_{t-1} \right)$$

$$\mathcal{H}^4(\theta_{t-1}, X_t) = \text{vec} \left( \tilde{\mathcal{R}}_{t-1}^{-1} \begin{pmatrix} x_{t-1} \\ u_{t-1} \end{pmatrix} \begin{pmatrix} x_t - (A_{t-1}, B_{t-1}) \end{pmatrix} \begin{pmatrix} x_{t-1} \\ u_{t-1} \end{pmatrix} \right)' \right)'.$$

The theory of stochastic recursive algorithms tells us to consider the function $h : W \to \mathbb{R}^M$ defined by

$$h(\theta) = \lim_{t \to \infty} E\mathcal{H}(\theta, \tilde{X}_t(\theta)),$$

where existence of this limit is guaranteed by our restrictions on $W$. The function $h$ has components

$$h^1(\theta) = \text{vec} (\mathcal{N}(\theta) - \mathcal{R})$$

$$h^2(\theta) = \text{vec} \left( \mathcal{R}^{-1} \mathcal{N}(\theta) \left( T^{SP}(H, \tilde{A}, \tilde{B}) - H \right)' \right)$$

$$h^3(\theta) = \text{vec} \left( \tilde{\mathcal{N}}(\theta) - \tilde{\mathcal{R}} \right)$$

$$h^4(\theta) = \text{vec} \left( \tilde{\mathcal{R}}^{-1} \mathcal{N}(\theta) \left( \begin{pmatrix} A' \\ B' \end{pmatrix} - \begin{pmatrix} \tilde{A}' \\ \tilde{B}' \end{pmatrix} \right) \right),$$

and captures the long-run expected behavior of $\theta_t$. 58
We will apply Theorem 4 of Ljung (1977), which directs attention to the ordinary differential equation \( \dot{\theta} = h(\theta) \), i.e. \( d\theta/d\tau = h(\theta) \), where \( \tau \) denotes notational time. Notice that \( h(\theta^* ) = 0 \), so that \( \theta^* \) is a fixed point of this differential equation. Ljung’s theorem tell us that, under certain conditions that we will verify, if \( \theta^* \) is a Lyapunov stable fixed point, then our learning algorithm will converge to it almost surely. The determination of Lyapunov stability for the system \( \dot{\theta} = h(\theta) \) involves simply computing the derivative of \( h \) and studying its eigenvalues: if the real parts of these eigenvalues are negative then the fixed point is Lyapunov stable. Computation of the derivative of \( h \) at \( \theta^* \) is accomplished by observing that the terms multiplying \( N(\theta) \) and \( \dot{N}(\theta) \) in equation (70) and (72) are zero when evaluated at \( \theta^* \) so that, by the product rule, the associated derivatives are zero. The resulting block diagonal form of the derivative of \( h \) yields repeated eigenvalues that are \(-1\) and the eigenvalues of \( \partial h^2 / \partial \text{vec}(H)' \), which have negative real part by Theorem 3. It follows that \( \theta^* \) is a Lyapunov stable fixed point of \( \theta = h(\theta) \).

To complete the proof of Theorem 4, we must verify the conditions of Ljung’s Theorem and augment the algorithm (66) with a projection facility. First we address the regularity conditions on the algorithm. Because \( \varepsilon_t \) has compact support, we apply Theorem 4 of Ljung (1977) using his assumptions A. Let the set \( D \) be the intersection of \( W \) with the basin of attraction of \( \theta^* \) under the dynamics \( \dot{\theta} = h(\theta) \). Note that \( D \) is both open and path-connected. Let \( D_R \) be a bounded open connected subset of \( D \) containing \( \theta^* \) such that its closure is also in \( D \). We note that for fixed \( X \), \( \mathcal{H}(\theta, X) \) is continuously differentiable (with respect to \( \theta \)) on \( D_R \), and for fixed \( \theta \in D_R \), \( \mathcal{H}(\theta, X) \) is continuously differentiable with respect to \( X \). Furthermore, on \( D_R \) the matrix functions \( A(\theta) \) and \( B(\theta) \) are continuously differentiable. Since the closure of \( D_R \) is compact, it follows from Coddington (1961), Theorem 1 of Ch. 6, that \( A(\theta) \) and \( B(\theta) \) are Lipschitz continuous on \( D_R \). The rest of assumptions A are immediate given the gain sequence \( \gamma_t \).

We now turn to the projection facility. Because \( \theta^* \) is Lyapunov stable there exists an associated Lyapunov function \( U : D \rightarrow \mathbb{R}_+ \). (See Theorem 11.1 of Krasovskii (1963) or Proposition 5.9, p. 98, of Evans and Honkapohja (2001).) For \( c > 0 \), define the notation

\[
K(c) = \{ \theta \in D : U(\theta) \leq c \}.
\]

Pick \( c_1 > 0 \) such that \( K(c_1) \subset D_R \), and let \( D_1 = \text{int} (K(c_1)) \). Pick \( c_2 < c_1 \), and let \( D_2 = K(c_2) \). Let \( \hat{\theta}_t \in D_2 \). Define a new recursive algorithm for \( \theta_t \) as follows:

\[
\theta_t = \begin{cases} 
\hat{\theta}_t = \theta_{t-1} + \gamma_t \mathcal{H}(\theta_{t-1}, X_t) & \text{if } \hat{\theta}_t \in D_1 \\
\theta_t & \text{if } \hat{\theta}_t \notin D_1
\end{cases}
\]

With these definitions, Theorem 4 of Ljung applies and shows that \( \theta_t \rightarrow \theta^* \) almost surely. ■

We remark that if \( \varepsilon_t \) does not have compact support but has finite absolute mo-
ments then it is possible to use Ljung’s assumptions B or the results presented on p. 123–125 of Evans and Honkapohja (2001) and Corollary 6.8 on page 136.

**Proof of Theorem 6.** First, we show $\Phi(R - WF^*) = \Phi(P^*)$ and $\Psi(R - WF^*) = \Psi(P^*)$. Using the Riccati equation we compute

$$P^* = R + \beta A'P^*A - \Psi(P^*)\Phi(P^*)\Psi(P^*)$$

$$= R - W\Phi(P^*)\Psi(P^*) + \beta A'P^*A - \beta A'P^*B\Phi(P^*)\Psi(P^*),$$

so that

$$P^* = R - WF^* + \beta A'P^*(A - BF^*).$$

Noting that $B'A' = 0$ and using the preceding equation, we conclude that

$$\Psi(P^*) \equiv \beta B'P^*A + W' = \Psi(R - WF^*),$$

and similarly for $\Phi$.

We next compute matrix differentials. Because $T^{EL} = \Phi \cdot \Psi$, it follows that $dT^{EL} = (d\Phi \cdot \Psi + \Phi \cdot d\Psi)$. Also, at arbitrary (appropriate) $F$, we have

$$d\Phi = ((Q + \beta B'(R - WF)B)^{-1}\beta B'W) \cdot dF \cdot (B(Q + \beta B'(R - WF)B)^{-1})$$

$$d\Psi = - (\beta B'W) \cdot dF \cdot (A).$$

Evaluated at $F^*$, we obtain

$$dT^{EL} = - (\beta \Phi(P^*)B'W) \cdot dF \cdot (B\Phi(P^*)\Psi(P^*) - A).$$

Applying the vec operator to each side, we obtain

$$D \left( T^{EL}_v \right) (F^*) = \Omega(P^*)' \otimes \beta^{1/2}\Phi(P^*)B'W,$$

where we recall that

$$\Omega(P^*) = \beta^{1/2}A - \beta^{1/2}B(Q + \beta B'P^*B)^{-1}(\beta B'P^*A + W')$$

$$= \beta^{1/2}(A - B\Phi(P^*)\Psi(P^*)).$$

In the proof of Theorem 1 it is shown that $\text{eig} \circ \Omega(P^*)$ have modulus less than one; thus the proof will be complete if we can show that the eigenvalues of $\beta^{1/2}\Phi(P^*)B'W$ are inside the unit circle. This requires three steps.

**Step 1.** We show that the eigenvalues of $\beta^{1/2}B\Phi(P^*)\Psi(P^*)$ are inside the unit circle. To see this let $y = -\beta^{1/2}B\Phi(P^*)\Psi(P^*)$ and notice that since the first $n_1$ rows of $B$ are zeros we have

$$y = \left( \begin{array}{cc} 0 & 0 \\ y_{21} & y_{22} \end{array} \right).$$
Because $A = A_{11} \oplus 0$, we conclude that
\[ \Omega(P^*) = \beta^{1/2} (A - B\Phi(P^*)\Psi(P^*)) = \left( \frac{\beta^{1/2}A_{11}}{y_{21}} 0 \right). \]
and step 1 is complete by Theorem 1.

Step 2. Now we show that
\[ \text{eig} \circ B\Phi(P^*)\Psi(P^*) = \text{eig} \circ B\Phi(P^*)W'. \]
Let $z = \beta B\Phi(P^*)B'P^*A$ and $\zeta = B\Phi(P^*)W'$, so that $B\Phi(P^*)\Psi(P^*) = z + \zeta$. The structures of $A$ and $B$ imply
\[ z = \left( \begin{array}{c} 0 \\ \xi_{21} \\ 0 \end{array} \right) \quad \text{and} \quad \zeta = \left( \begin{array}{c} 0 \\ \zeta_{21} \\ \zeta_{22} \end{array} \right), \]
and step 2 is follows.

Step 3. Finally, we show that
\[ \text{eig} \circ \Phi(P^*)B'W \subset \text{eig} \circ B\Phi(P^*)W'. \]
Since eigenvalues are preserved under transposition, it suffices to show that
\[ \text{eig} \circ W'B\Phi(P^*) \subset \text{eig} \circ B\Phi(P^*)W'. \]
To this end, let $\xi = B\Phi(P^*)$, and notice $\xi' = (0 \mid \xi_2')$. Writing the $n \times m$ matrix $W$ as $W' = (W_1' \mid W_2')$, we compute $W'\xi = W_2'\xi_2$ and
\[ \xi W' = \left( \begin{array}{c} 0 \\ \xi_2 W_1' \\ \xi_2 W_2' \end{array} \right). \]
If $X$ is a square matrix let $\text{eig} \circ X \subset \mathbb{C}$ denote the set of eigenvalues of $X$ ignoring multiplicity. Since $\xi_2$ and $W_2$ are $m \times m$ matrices, it follows that $\text{eig} \circ \xi_2 W_2' = \text{eig} \circ W_2'\xi_2$, and step 3 is complete.\(^{35}\)

By steps 3 and 2 we have
\[ \text{eig} \circ \beta^{1/2}\Phi(P^*)B'W \subset \text{eig} \circ \beta^{1/2}B\Phi(P^*)W' = \text{eig} \circ \beta^{1/2}B\Phi(P^*)\Psi(P^*). \]
The result then follows from step 1. \(\blacksquare\)

---

\(^{35}\)If $C$ is a $p \times q$ matrix and $D$ is a $q \times p$ matrix then every non-zero eigenvalue of $CD$ is an eigenvalue of $DC$. To see this suppose $CDv = \mu v$, where $\mu$ and $v$ are non-zero. Then $DC(Dv) = \mu Dv$, where $Dv$ is non-zero because $CDv$ is non-zero. Thus $\mu$ is a non-zero eigenvalue of $DC$.

If $q > p$ then the null space of $C$ is nontrivial. Thus zero is an eigenvalue of $DC$, though it may not be an eigenvalue of $CD$. 

61
Appendix B: Solving the Quadratic Program

While the LQ-framework developed Section 3.1 is well-understood under various sets of assumptions, we include here, for completeness, precise statements and proofs of the results needed for our work. Here we begin with the deterministic case—the stochastic case, as presented in the next section, relies on the same types of arguments but requires considerably more technical machinery to deal with issues involving measurability. The proofs presented here follow the work of Bertsekas (1987) and Bertsekas and Shreve (1978) with modifications as required to account distinct assumptions.

Solving the LQ-Problem: the Deterministic Case.

The problem under consideration is
\[
\min_{t \geq 0} \beta^t \left( x_t' R x_t + u_t' Q u_t + 2 x_t' W u_t \right)
\] (73)
subject to
\[
x_{t+1} = A x_t + B u_t
\] (74)
with \(x_0\) given. Notice that we have shut down the stochastic shock. Also, we are considering the equivalent minimization problem: this is only for notational convenience. We assume LQ.1 – LQ.3 are satisfied.

Formalizing the programming problem

To make formal the problem (73) we define a policy to be a sequence \(\pi = \{\pi_t\}\), where \(\pi_t : \mathbb{R}^n \to \mathbb{R}^m\). The policy is stationary if \(\pi_t = \pi_s\), in which case, abusing notation, we will identify the policy as \(\pi : \mathbb{R}^n \to \mathbb{R}^m\). Set \(V_\pi : \mathbb{R}^n \to [0, \infty]\) as
\[
V_\pi(x) = \sum_{t \geq 0} \beta^t \left( x_t' R x_t + u_t' Q u_t + 2 x_t' W u_t \right)
\]
with \(x_{t+1} = A x_t + B u_t\) and \(u_t = \pi_t(x_t)\). Letting \(\Pi\) be the collection of all policies, we define \(V^* : \mathbb{R}^n \to [-\infty, \infty]\) by
\[
V^*(x) = \inf_{\pi \in \Pi} V_\pi(x).
\] (75)
While \(V^*\) is now well defined, more can be said. Specifically,

Lemma 5 \(V^*(x) \in [0, \infty)\).

Proof: To see that \(V^*(x) \geq 0\), it is sufficient to note that
\[
x' R x + u' Q u + 2 x' W u
\]
\[
= x' R x - x' W' Q^{-1} W x + x' W' Q^{-1} Q Q^{-1} W x + u' Q u + u' Q Q^{-1} W x + x' W' Q^{-1} Q u
\]
\[
= x' (R - W' Q^{-1} W) x + (u + Q^{-1} W x)' Q (u + Q^{-1} W x)
\]
\[
= x' \hat{R} x + (u + Q^{-1} W x)' Q (u + Q^{-1} W x) \geq 0.
\] (76)
To establish that $V^*$ is finite-valued, choose $\hat{F}$ to stabilize $(\hat{A}, \hat{B})$ and set $F = Q^{-1}W' + \hat{F}$. Then
\[
\beta^{1/2} (A - BF) = \beta^{1/2} \left( A - B \left( Q^{-1}W' + \hat{F} \right) \right) = \beta^{1/2} \left( A - BQ^{-1}W' \right) - \beta^{1/2} B\hat{F} = \hat{A} - \hat{B}\hat{F},
\]
so that $\beta^{1/2} (A - BF)$ is stable. Let the policy $\pi^F$ be given by $\pi^F_\xi(x) = -Fx$. It follows that
\[
V^*(x) \leq V_{\pi^F}(x) = x' \left( \sum_{t \geq 0} \beta^t \left( \begin{array}{c} A' - F'B' \\ R + F'QF - 2WF \end{array} \right)^t (A - BF)^t \right) x < \infty,
\]
where the inequality comes from Lemma 4. 

We conclude that the solution to the sequence problem (75) is a well-defined, non-negative, real-valued function.

The S-map

Characterization of $V^*$ is provided by the Principle of Optimality. To develop this characterization carefully, we work as follows. The proof of Lemma 5 establishes that under LQ.1 – LQ.3
\[
x'Rx + u'Qu + 2x'Wu \geq 0.
\]
It follows that given any function $V : \mathbb{R}^n \to [0, \infty)$, we may define $S(V) : \mathbb{R}^n \to [0, \infty)$ by
\[
S(V)(x) = \inf_{u \in \mathbb{R}^m} \left( x'Rx + u'Qu + 2x'Wu + \beta V(Ax + Bu) \right).
\]
It will be helpful to observe that given $V$ and $\varepsilon > 0$ we can find the stationary policy $\pi_\varepsilon : \mathbb{R}^n \to \mathbb{R}^m$ so that for each $x \in \mathbb{R}^n$, the control choice $u = \pi_\varepsilon(x)$ implies objective $x'Rx + u'Qu + 2x'Wu + \beta V(Ax + Bu)$ is within $\varepsilon$ of the infimum, that is,
\[
x'Rx + \pi_\varepsilon(x)'Q\pi_\varepsilon(x) + 2x'W\pi_\varepsilon(x) + \beta V(Ax + B\pi_\varepsilon(x)) \leq S(V)(x) + \varepsilon.
\]
The following result is the work-horse lemma for dynamic programming in the deterministic case.

**Lemma 6** The map $S$ satisfies the following properties:

1. (Monotonicity) If $V_1, V_2 : \mathbb{R}^n \to [0, \infty)$ and $V_1 \leq V_2$ then $S(V_1) \leq S(V_2)$.
2. (Principle of Optimality) $V^* = S(V^*)$. 

63
3. (Minimality of \( V^* \)) If \( V : \mathbb{R}^n \to [0, \infty) \) and \( S(V) = V \) then \( V^* \leq V \).

**Proof.** To establish item 1, let \( \varepsilon > 0 \) and choose a stationary policy \( \pi_\varepsilon \) so that

\[
x'Rx + \pi_\varepsilon(x)'Q\pi_\varepsilon(x) + 2x'W\pi(x) + V_2(Ax + B\pi_\varepsilon(x)) \leq S(V_2)(x) + \varepsilon.
\]

Then

\[
S(V_1)(x) \leq x'Rx + \pi_\varepsilon(x)'Q\pi_\varepsilon(x) + 2x'W\pi_\varepsilon(x) + V_1(Ax + B\pi_\varepsilon(x)) \\
\leq x'Rx + \pi_\varepsilon(x)'Q\pi_\varepsilon(x) + 2x'W\pi_\varepsilon(x) + V_2(Ax + B\pi_\varepsilon(x)) \leq S(V_2)(x) + \varepsilon.
\]

Item 2 is the Principle of Optimality: see e.g. Proposition 8 on page 253 of Bertsekas (1987). To establish item 3, let \( V \) be a fixed point of \( S \) and \( \varepsilon > 0 \). and let \( \delta = 1/2(1 - \beta)\varepsilon > 0 \). Choose stationary policy \( \pi_\delta \) so that

\[
x'Rx + \pi_\delta(x)'Q\pi_\delta(x) + 2x'W\pi_\delta(x) + V(Ax + B\pi_\delta(x)) \leq S(V)(x) + \delta.
\]

Now fix \( x \in \mathbb{R}^n \), and let \((x_t, u_t)\) be the sequence generated by the policy \( \pi_\delta \), the transition dynamic (74), and the initial condition \( x_0 = x \). Then

\[
V^*(x) \leq \lim_{T \to \infty} \sum_{t=0}^T \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) \\
\leq \lim_{T \to \infty} \left( \beta^{T+1}V(x_{T+1}) + \sum_{t=0}^T \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) \right) \\
= \lim_{T \to \infty} \left( \beta^{T+1}V(Ax_T + Bu_T) + \sum_{t=0}^T \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) \right) \\
= \lim_{T \to \infty} \left( \beta^T (x'_TRx_T + u'_TQu_T + 2x'_TWu_T + \beta V(Ax_T + Bu_T)) \\
+ \sum_{t=0}^{T-1} \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) \right) \\
\leq \lim_{T \to \infty} \left( \beta^T (S(V)(x_T) + \delta) + \sum_{t=0}^{T-1} \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) \right) \\
= \lim_{T \to \infty} \left( \beta^TV(x_T) + \sum_{t=0}^{T-1} \beta^t (x'_tRx_t + u'_tQu_t + 2x'_tWu_t) + \beta^T \delta \right) \\
\vdots \\
\leq \lim_{T \to \infty} \left( V(x_0) + \delta \sum_{t=0}^T \beta^t \right) = V(x) + \delta \sum_{t=0}^\infty \beta^t < V(x) + \varepsilon. \hfill \blacksquare
\]
Solving the LQ-problem

The following lemma relates the \( \Sigma \)-map to the \( \Lambda \)-map, and we use this Lemma to prove Theorem 7:

**Lemma 7** If \( P \) is symmetric positive semi-definite and \( V_P(x) = x'Px \) is the corresponding quadratic form then \( S^N(V_P)(x) = x'T^N(P)x \).

**Proof.** That \( S(V_P)(x) = x'T(P)x \) follows from Lemma 1. Thus \( S(V_P)(x) = V_{T(P)}(x) \). Working by induction,

\[
S^N(V_P)(x) = (S^{N-1} \circ S)(V_P)(x) = S^{N-1}(S(V_P))(x)
\]

\[
= S^{N-1}(V_{T(P)})(x) = x'T^{N-1}(T(P))x
\]

\[
= x'T^N(P)x.
\]

**Theorem 7** Assume LQ.1 – LQ.3 and let \( P^* \) be as in Theorem 1. Then

1. \( V^*(x) = x'P^*x \).

2. There is a unique stationary policy \( \pi \) given by \( \pi(x) = -F(P^*)x \) so that \( V_{\pi}(x) = V^*(x) \).

**Proof.** To demonstrate item 1, we lean heavily on Lemma 1. Let \( V_{P^*}(x) = x'P^*x \). Then

\[
S(V_{P^*})(x) = x'T(V_{P^*})x = x'P^*x = V_{P^*}(x),
\]

where the first equality follows from Lemma 1 and the second follows from the fact that \( P^* \) is a fixed point of \( T \). It follows from item 3 of Lemma (6) that \( V^*(x) \leq V_{P^*}(x) \). Next notice that \( 0 \leq V^* \), so that by items 1 and 2 of Lemma 6 that \( S^N(0) \leq V^* \). But by Lemma 7, \( S^N(0)(x) = x'T^N(0)x \). Thus \( x'T^N(0)x \leq V^*(x) \). Taking limits we have

\[
V_{P^*}(x) = x'P^*x = \lim_{N \to \infty} x'T^N(0)x \leq V^*(x),
\]

and the item 1 is established.

To determine the optimal policy consider the optimization problem

\[
\inf_{u \in \mathbb{R}^m} \left( x'Rx + u'Qu + 2x'Wu + \beta V_{P^*}(Ax + Bu) \right). \tag{77}
\]

By Lemma 1 the unique solution is given by \( u = -F(P^*)x \). Let the stationary policy \( \pi \) be given by \( \pi(x) = -F(P^*)x \). It remains to show that \( V_{\pi}(x) = V^*(x) \). To this end,
note that
\[
\hat{F}(P^*) = (Q + \beta B' P^* B)^{-1} \beta B' P^* \hat{A}
\]
\[
= (Q + \beta B' P^* B)^{-1} \beta B' P^* \left( A - B Q^{-1} W' \right)
\]
\[
= (Q + \beta B' P^* B)^{-1} \left( \beta B' P^* A + W' - QQ^{-1} W' - \beta B' P^* B Q^{-1} W' \right)
\]
\[
= (Q + \beta B' P^* B)^{-1} \left[ (\beta B' P^* A + W') - (Q + \beta B' P^* B) Q^{-1} W' \right]
\]
\[
= F(P^*) - Q^{-1} W'.
\]

From \( \hat{R} = R - W Q^{-1} W' \) we have
\[
x' R x + u' Q u + 2 x' W u
\]
\[
= x' \hat{R} x + (u + Q^{-1} W x)' Q(u + Q^{-1} W x).
\]

It follows that under the policy \( u = -F(P^*) x \),
\[
x' R x + u' Q u + 2 x' W u = x' \left( \hat{R} + (F(P^*) + Q^{-1} W') Q(F(P^*) + Q^{-1} W') \right) x
\]
\[
= x' \left( \hat{R} + \hat{F}(P^*)' Q \hat{F}(P^*) \right) x.
\]

Also, under \( u = -F(P^*) x \), by step 6 of the proof of Theorem 1, we have
\[
x_t = A x_{t-1} + B u_{t-1} = (A - B F(P^*)) x_{t-1}
\]
\[
= \beta^{-1/2} \Omega(P^*) x_{t-1} = \beta^{-t/2} \Omega(P^*)^t x_0.
\]

We conclude that
\[
V_\pi(x) = x' \left( \sum_{t \geq 0} (\Omega(P^*))^t \left( \hat{R} + \hat{F}(P^*)' Q \hat{F}(P^*) \right) (\Omega(P^*))^t \right) x
\]
\[
= x' \left( \hat{R} + \hat{F}(P^*)' Q \hat{F}(P^*) + \Omega(P^*)' P^* \Omega(P^*) \right) x = x' P^* x,
\]

where the second equality comes from Lemma 4 and the third from Lemma 3 and the fact that \( P^* \) is a fixed point to the T-map.

Finally, to establish uniqueness, let \( \pi \) be any stationary policy so that \( V_\pi(x) = V^*(x) \). Then
\[
x' R x + \pi(x)' Q \pi(x) + 2 x' W \pi(x) + \beta V_\pi(A x + B \pi(x))
\]
\[
= V_\pi(x) = V^*(x) = \inf_{u \in R^n} (x' R x + u' Q u + 2 x' W u + \beta V^* (A x + B u)).
\]

This shows that \( u = \pi(x) \) is a solution to the minimization problem (77). The proof is complete by recalling that we showed this solution is unique.

**Solving the LQ-Problem: the Stochastic Case.** Discussion to be added. See Bertsekas and Shreve (1978) for a complete analysis.
Appendix C: Examples

Proof of Proposition 1. We reproduce the LQ problem (48) here for convenience:

\[
\begin{align*}
\text{max} & \quad -E \sum_{t \geq 0} \beta^t \left( (c_t - b^*)^2 + \phi s_{t-1}^2 \right) \\
\text{s.t.} & \quad s_{t+1} = A_1 s_t + A_2 s_{t-1} - c_t + \mu_{t+1}
\end{align*}
\]  
\tag{78}

To place in standard LQ form (see (7)), we define the state as \( x_t = (1, s_t, s_{t-1})' \) and the control as \( u_t = c_t \). Note that the intercept is an exogenous state. The key matrices are given by:

\[
R = \begin{pmatrix}
(b^*)^2 & 0 & 0 \\
0 & \phi & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad A = \begin{pmatrix}
1 & 0 & 0 \\
0 & A_1 & A_2 \\
0 & 1 & 0
\end{pmatrix},
\]

and \( W = (-b^*, 0, 0)', B = (0, -1, 0)', \) and \( Q = 1 \). The transformed matrices are \( \hat{R} = R - WW', \hat{A} = \beta^{\frac{1}{2}} (A - BW') \), and \( \hat{B} = \beta^{\frac{1}{2}} B \): thus

\[
\hat{R} = \begin{pmatrix}
0 & 0 & 0 \\
0 & \phi & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \hat{A} = \beta^{\frac{1}{2}} \begin{pmatrix}
1 & 0 & 0 \\
-b^* & A_1 & A_2 \\
0 & 1 & 0
\end{pmatrix}.
\]

We see immediately that LQ.1 is satisfied: \( \hat{R} \) is positive semi-definite and \( Q \) is positive definite. Next let \( K = (K_1, K_2, K_3) \) be any \( 1 \times 3 \) matrix. Then

\[
\hat{A} - \hat{BK} = \beta^{\frac{1}{2}} \begin{pmatrix}
1 & 0 & 0 \\
-b^* + K_1 & A_1 + K_2 & A_2 + K_3 \\
0 & 1 & 0
\end{pmatrix}.
\]

By choosing \( K_2 = -A_1 \) and \( K_3 = -A_2 \), we see that \( (\hat{A}, \hat{B}) \) is a stabilizable pair: thus LQ.2 is satisfied. Finally, to verify LQ.3' note that

\[
\hat{D} = \begin{pmatrix}
0 & 0 & 0 \\
0 & \sqrt{\phi} & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

and suppose that \( \hat{A} y = \mu y \) and \( \hat{D} y = 0 \) is satisfied for some \( y \). \( \hat{D} y = 0 \) implies that the second component of \( y \) is zero, i.e. \( y_2 = 0 \). Since the third component of \( \hat{A} y \) must then be zero, it then follows from \( \hat{A} y = \mu y \) that \( y_3 = 0 \) or \( \mu = 0 \). Since \( A_2 \neq 0 \) implies \( \mu \neq 0 \), we conclude that LQ.3' is satisfied. The proof is completed by application of Theorem 4'.

Details of Robinson Crusoe Economy. The LQ set-up (78) does not directly impose non-negativity constraints that are present. We show that under suitable
assumptions these constraints are never violated. Carefully specified as an economics problem, (78) should include the constraints

\[ 0 \leq c_t \leq A_1 s_t + A_2 s_{t-1} \text{ and } s_{t+1} \geq 0. \] (79)

In addition, because the assumption of “free disposal” is not incorporated in the LQ set-up, our solution must also obey \( c_t \leq b^* \). We show these inequalities are satisfied by demonstrating that \( s_t > 0 \) and \( c_t \in (0, b^*) \) under the assumptions specified in the text. Indeed, let \( c \) and \( s \) be the respective nonstochastic steady-state values of \( c_t \) and \( s_t \). The transition equation implies \( c = \Theta s \), where \( \Theta = A_1 + A_2 - 1 \). Inserting this condition into the Euler equation, reproduced here for convenience,

\[ c_t - \beta \phi \hat{E}_t s_{t+1} = b^*(1 - \beta A_1 - \beta^2 A_2) + \beta A_1 \hat{E}_t c_{t+1} + \beta^2 A_2 \hat{E}_t c_{t+2}, \] (80)

and solving for \( s \) yields

\[ s = \frac{b^*(1 - \beta A_1 - \beta^2 A_2)}{\Theta(1 - \beta A_1 - \beta^2 A_2) - \beta \phi}. \]

If \( \beta A_1 + \beta^2 A_2 > 1 \) then \( s > 0 \) and \( c \in (0, b^*) \). Provided suitable initial conditions hold and the support of \( \mu_{t+1} \) is sufficiently small, it follows that \( s_t > 0 \) and \( c_t \in (0, b^*) \).

**Euler Equation Learning in the Robinson Crusoe Economy** Turning to Euler equation learning, recall the PLM

\[ c_t = a_3 + b_3 s_t + d_3 s_{t-1}. \]

Using this PLM, the following expectations may be computed:

\[ \hat{E}_t c_{t+1} = a_3 + (b_3 A_1 + d_3) s_t + b_3 A_2 s_{t-1} - b_3 c_t \]

\[ \hat{E}_t c_{t+2} = a_3 (1 - b_3) + ((b_3 (A_1 - b_3) + d_3) A_1 + b_3 (A_2 - d_3)) s_t + (b_3 (A_1 - b_3) + d_3) A_2 s_{t-1} - (b_3 (A_1 - b_3) + d_3) c_t. \]

Combining these expectations with (80) provides the following T-map:

\[ a_3 \rightarrow \frac{\psi + \beta A_1 a_3 + \beta^2 A_2 a_3 (1 - b_3)}{1 + \beta \phi + \beta A_1 b_3 + \beta^2 A_2 (b_3 (A_1 - b_3) + d_3)} \]

\[ b_3 \rightarrow \frac{\beta \phi A_1 + \beta A_1 (b_3 A_1 + d_3) + \beta^2 A_2 ((b_3 (A_1 - b_3) + d_3) A_1 + b_3 (A_2 - d_3))}{1 + \beta \phi + \beta A_1 b_3 + \beta^2 A_2 (b_3 (A_1 - b_3) + d_3)} \]

\[ d_3 \rightarrow \frac{\beta \phi A_2 + \beta A_1 b_3 A_2 + \beta^2 A_2 (b_3 (A_1 - b_3) + d_3)}{1 + \beta \phi + \beta A_1 b_3 + \beta^2 A_2 (b_3 (A_1 - b_3) + d_3)}. \]
References


